Models for Managing the Development of Distributed Technical Systems
Authors: Gorelov B.А., Davydov A.D., Silaev A.V., Tikhonov A.V. | Published: 02.04.2018 |
Published in issue: #3(696)/2018 | |
Category: Aviation, Rocket and Technology | |
Keywords: economical and mathematical models, distributed technical systems, technical and economic efficiency |
Currently, a modular approach is being actively used to create and operate technical systems. There are significant differences in the interpretation and methods of implementation of the modular approach. As a result, the expectations of customers and developers often cannot be met, and this leads to unwarranted criticism of the modular approach, design and strategy. These differences are reflected in the reference trends in the development of aviation systems as distributed technical systems that utilize modular strategy principles to some degree. Verbal descriptions of models for the creation, technocenotic development and life cycle management of distributed technical systems are given. The purpose of this work is to establish and evaluate technical and economic efficiency of distributed technical systems. The models take into account the specifics of distributed technical systems as open systems having a variable composition and structure that are distributed in space and time. When performing a system analysis of formation of technical systems based on the principles of unification and standardization and analyzing the life cycle of such systems, methods of operation research and mathematical programming are used. Aviation systems in their technocenotic development are used as the research object. The result of the study was an improvement in the methodology of managing the development of distributed technical systems and evaluating their technical and economic efficiency.
References
[1] Burenok V.M., Pechatnov Iu.A. O kriterial’nykh osnovakh iadernogo sderzhivaniia [The criteria basis of nuclear deterrence]. Vooruzhenie i ekonomika [Armament and Economics]. 2013, no. 1(22), pp. 21–30. Available at: http://www.viek.ru/22/21-30.pdf (accessed 10 September 2017).
[2] Korchak V.Iu., Tuzhikov E.Z., Polubekhin A.I., Stukalin S.V. Sistema upravleniia innovatsionnym razvitiem vooruzheniia i voennoi tekhniki — osnovnye nedostatki i puti sovershenstvovaniia [Control system of innovative development of armament and military equipment — main shortcomings and ways of improvement]. Strategicheskaia stabil’nost’ [Strategic Stability]. 2014, no. 3(68), pp. 38–44.
[3] Korchak V.Iu., Ivanenkov V.V., Vikhrov V.A. Innovatsionnaia osnova razrabotki i proizvodstva novykh pokolenii robototekhnicheskikh kompleksov [Innovative Basis of Development and Production of new Generations of Robotic Complexes]. Kompetentnost’ [Сompetence]. 2015, no. 8(129), pp. 53–55.
[4] Aleksandrov Iu.I., Novikov A.V., Chugin O.I. Modul’nye sistemy vooruzheniia [Modular wea-pon systems]. Morskaia radioelektronika [Marine Radio-electronics]. 2011, no. 2, pp. 5–11.
[5] Nefedovich A.V., Tret’iakov O.V. Ergonomicheskoe obespechenie modul’nogo printsipa proektirovaniia [Ergonomic support of the modular design principle]. Morskoi sbornik [Marine collection]. 2012, no. 9(1986), pp. 32–35.
[6] Shcheptsov A.V. Osnovnye napravleniia razvitiia torpednogo oruzhiia dlia dostizheniia sovremennykh trebovanii k ego taktiko-tekhnicheskim kharakteristikam [Main perspectives of torpedo weapons development to achive contemporari requirement to its tactical and technical characteristics]. Available at: http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/29452/1/ITE_2016_1_Shcheptsov_Osnovnye.pdf (accessed 10 September 2017).
[7] Iudaev A.V., Shvykin Iu.V., Ignatov A.V., Karpov Ia.Iu. Kompleksnaia avtomatizatsiia proektirovaniia vysokotochnogo oruzhiia [Complex automation design of high-precision wea¬pons]. Izvestiia Tul’skogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Proceedings of the TSU. Technical sciences]. 2015, no. 7–1, pp. 286–291.
[8] Oksenich N.V., Dolzhenko I.Iu., Komar Iu.E., Lebedev V.A, Belichenko A.V. Modul’nyi printsip proektirovaniia kompleksov vooruzheniia legkoi bronetankovoi tekhniki [The modular design of weapon systems of light armored vehicles]. Іntegrovanі tekhnologії promislovostі [Integrated technology industry]. 2014, is. 3, pp. 70–74.
[9] Degtiar’ G.V., Kanin R.N. General’nyi konstruktor Viktor Petrovich Makeev [General Designer Viktor Petrovich Makeev]. Aktual’nye problemy aviatsionnykh i aerokosmicheskikh sistem: protsessy, modeli, eksperiment [Actual problems of aviation and aerospace systems: processes, models, experiment]. 2015, vol. 20, no. 1(40), pp. 146–153.
[10] Pisarev S.A., Chirkov D.V., Farkhetdinov R.R., Farkhetdinova Iu.S. O funktsional’no-konstruktivnykh vozmozhnostiakh boevogo i grazhdanskogo strelkovogo oruzhiia modul’noi konstruktsii [About the Functional and Design Capabilities of Military and Civil Modular Small Arms]. Vestnik IZhGTU im. M.T. Kalashnikova [Bulletin of Kalashnikov ISTU]. 2016, no. 3(71), pp. 4–6.
[11] Atasoy B., Salani M., Bierlaire M., Leonardi C. Impact analysis of a flexible air transportation system. Available at: http://infoscience.epfl.ch/record/196062 (accessed 10 September 2017).
[12] Sullivan M.J. F-35 Joint Strike Fighter: Preliminary Observations on Program Progress. Available at: http://www.dtic.mil/get-tr-doc/pdf?AD=AD1005848 (accessed 10 September 2017).
[13] Bell W.S. Joint Direct Attack Munition (JDAM). Available at: http://www.dtic.mil/get-tr-doc/pdf?AD=AD1019464 (accessed 10 September 2017).
[14] Halpern B.H. Joint Small Arms Technology Development Strategy for Joint Service Small Arms Science and Technology Investments. Available at: http://www.dtic.mil/get-tr-doc/pdf?AD=AD1004913 (accessed 10 September 2017).
[15] Athearn C.B. Joint Air-to-Surface Standoff Missile (JASSM). Available at: http://www.dtic.mil/get-tr-doc/pdf?AD=AD1019462 (accessed 10 September 2017).
[16] Belkin V.N. Boevye chasti sovremennykh aviatsionnykh sredstv porazheniia [Combat units of modern aviation weapons]. Aviatsionnye sistemy [Aviation systems]. 2016, no. 1, pp. 2–18.
[17] Akinshin R.N., Dmitriev V.G., Markov N.M., Perunov Iu.M., Starozhuk E.A. Istoriia sozdaniia i tendentsii razvitiia sovremennykh boepripasov i vzryvatelei [The history and deve¬lopment trends of modern ammunition and fuses]. Moscow, Bauman Press, 2013. 204 p.
[18] Kuprin I.L., Davydov A.D., Selivanov S.N. Modul’naia strategiia razvitiia — sistemoekonomicheskaia kontseptsiia intensifikatsii razvitiia vysokotekhnologichnykh kompleksov [Modular development strategy — system economic concept of intensifying high-tech complex development]. Vestnik MGOU. Seriia: Ekonomika [Bulletin MSRU. Series: Economics]. 2012, no. 1, pp. 78–85.
[19] Markovskii K., Perov V. Sovetskie aviatsionnye rakety «vozdukh-zemlia» [Soviet air-to-surface missiles]. Moscow, Eksprint publ., 2006. 50 p.
[20] Kuprin I.L., Davydov A.D., Vinogradov S.M. Problemy ekonomiko-matematicheskogo modelirovaniia perspektiv razvitiia modul’nykh raketnykh kompleksov [Problems of economic-mathematical modeling development prospects of the modular missile complexes]. Vestnik Moskovskogo aviatsionnogo instituta [Vestnik MAI]. 2010, no. 4(17), pp. 197–201.
[21] Kuprin I.L., Tikhonov I.P., Khrustalev O.E. Kontseptual’nye osnovy formirovaniia perspektivnykh strategii innovatsionnogo razvitiia vysokotekhnologichnykh kompleksov [Conceptual basis for the formation of promising strategies for innovative development of high-tech systems]. Natsional’nye interesy: prioritety i bezopasnost’ [National interests: priorities and security]. 2013, no. 16(205), pp. 19–24.
[22] Kuprin I.L., Davydov A.D., Teplov Iu.A. Opornye tendentsii v razvitii transformiruemykh vysokotekhnologichnykh kompleksov [Supporting trends for transformable high-tech complexes]. Natsional’nye interesy: prioritety i bezopasnost’ [National interests: priorities and security]. 2013, no. 46(235), pp. 20–30.