Methodological Aspects of Determining Thrust of Irrotational Air-Breathing Jet Engines in Bench and Flight Tests
Authors: Semenov V.L., Aleksandrov V.Yu., Prokhorov A.N., Arefyev K.Yu., Kruchkov S.V. | Published: 26.11.2019 |
Published in issue: #11(716)/2019 | |
Category: Aviation, Rocket and Technology | Chapter: Inspection and Testing of Aircraft and Aircraft Systems | |
Keywords: irrotational air-breathing jet engine, high-speed aircraft, engine thrust, specific impulse, pressure loading, numerical model |
This article examines methodological aspects of the indirect calculation of thrust characteristics of irrotational air-breathing jet engines using telemetry data that can be obtained during high-speed aircraft flight tests. Specific features of determining thrust characteristics during bench and flight tests are described. Mathematical models are developed for data analysis and calculation of the thrust and the specific impulse of an irrotational air-breathing jet engine by internal parameters, as well as its effective thrust in integration with a high-speed aircraft. The proposed approaches are tested, and the developed mathematical models are validated according to the results of experimental bench tests of the thrust characteristics of irrotational air-breathing jet engines in integration with a model fuselage of a high-speed aircraft. Satisfactory convergence of the results of indirect and direct (experimental) force measurements is shown. The data obtained can be used for further development of the method and analysis of bench and flight tests of aircraft with irrotational air-breathing jet engines.
References
[1] Degtyar’ V.G., Son Eh.E. Giperzvukovye letatel’nye apparaty [Hypersonic aircraft]. Vol. 1. Moscow, Yanus-K publ., 2016. 812 p.
[2] Teoriya i raschet vozdushno-reaktivnykh dvigateley [Theory and calculation of air-jet engines]. Ed. Shlyakhtenko S.M. Moscow, Mashinostroenie publ., 1987. 568 p.
[3] Pezzella G., Marini M., Cicala M., Vitale A., Langener T., Steelant J. Aerodynamic Characterization of HEXAFLY Scramjet Propelled Hypersonic Vehicle. 32nd AIAA Aviation (Applied Aerodynamics Conference), AIAA 2014-2844, 16–20 June 2014, Atlanta, GA, USA, code 106134.
[4] Arefyev K.Yu., Kukshinov N.V., Prokhorov A.N. Analysis of development trends of power-units for high-speed flying vehicles. Journal of Physics: Conference Series, 2019, vol. 1147, pp. 1–15, doi: 10.1088/1742-6596/1147/1/012055
[5] Steelant J., Villace V.I., Marini M., Pezzella G., Reimann B., Chernyshev S.L., Gubanov A.A., Talyzin V.A., Voevodenko N.V., Kukshinov N.V., Prokhorov A.N., Neely A.J., Kennell C., Verstraete D., Buttsworth D. Numerical and experimental research on aerodynamics of a high-speed passenger vehicle within the HEXAFLY-INT project. 30th Congress of the International Council of the Aeronautical Sciences, ICAS 2016, Daejeon Convention Center, South Korea, 25–30 September 2016, code 126186.
[6] Vinogradov V.A., Semenov V.L., Shikhman Yu.M. To the 15th anniversary of the world’s first flight test of liquid hydrogen gas turbine engine. Engine, 2006, no. 6(48), pp. 28–29 (in Russ.).
[7] Semenov V.L., Aleksandrov V.Yu., Aref’ev K.Yu., Ivanov A.P., Pogorelova O.F. Sposob opredeleniya tyagi pryamotochnogo vozdushno-reaktivnogo dvigatelya pri letnykh ispytaniyakh [Method for determining the thrust ramjet engine in flight tests]. Patent RF no. 2663320, 2018.
[8] Lovitskiy L.L., Semenov V.L., Stepanova S.Yu. Sposob opredeleniya sily tyagi giperzvukovogo pryamotochnogo vozdushno-reaktivnogo dvigatelya po rezul’tatam letnykh ispytaniy ego na giperzvukovoy letayushchey laboratorii [A method for determining the thrust force of a hypersonic ramjet engine based on the results of its flight tests at a hypersonic flying laboratory]. Patent RF no. 2324156, 2008.
[9] GOST 20058—80. Dinamika letatel’nykh apparatov v atmosphere [State Standard 20058–80. Aircraft dynamics in atmosphere. Terms, definitions and symbols]. Moscow, Standartinform publ., 1981.
[10] Aleksandrov V.Yu., Aref’ev K.Yu., Il’chenko M.A., Ananyan M.V. Research of Workflow Efficiency in High-Enthalpy Air Flow Compact Generators. Science and Education. Bauman MSTU, 2015, no. 08, pp. 75–86 (in Russ.). Available at: http://engineering-science.ru/doc/798965.html (accessed 15 Mach 2019), doi: 10.7463/0815.0798965
[11] Aleksandrov V.Yu., Moseev D.S. Methods and ways to simulate real high enthalpy flight conditions for ground test facilities. XXXI International conference on equations of state for matter (ELBRUS 2016), Elbrus, Russia, 01–06 Mach 2016, pp. 218–219.
[12] Kharitonov A.M. Tekhnika i metody aehrofizicheskogo ehksperimenta. Ch. 1. Aehrodinamicheskie truby i gazodinamicheskie ustanovki [Techniques and methods of Aerophysical experiment. Part 1. Wind tunnels and gas-dynamic installations]. Novosibirsk, NSTU publ., 2005. 220 p.
[13] Semenov V.L., Strokin M.V., Relin V.L. Sposob izmereniya tyagi v polete giperzvukovogo pryamotochnogo vozdushno-reaktivnogo dvigatelya (GPVRD) nepilotiruemoy giperzvukovoy letayushchey laboratorii (GLL) [Method of measuring thrust in flight of hypersonic ramjet engine (scramjet) unmanned hypersonic flying laboratory (GLL)]. Patent RF no. 2242736, 2004.
[14] Matematicheskoe modelirovanie teplovykh i gazodinamicheskikh protsessov pri proektirovanii letatel’nykh apparatov [Mathematical modeling of thermal and gas-dynamic processes in the design of aircraft]. Ed. Gorskiy V.V. Moscow, Bauman Press, 2011. 212 p.
[15] Gun’ko Yu.P., Zvegintsev V.I., Mazhul’ I.I., Nalivaychenko D.G., Turgo I.S., Kharitonov A.M., Chirkashenko V.F. Wind-tunnel tests of a model scramjet under high Mach and Reynolds numbers. Thermophysics and Aeromechanics, 2003, no. 3, pp. 321–345.
[16] Voevodenko N.V., Gubanov A.A., Gusev D.Yu., Ivan’kin M.A., Ivanyushkin D.S., Lunin V.Yu., Talyzin V.A., Yakovleva V.A. Computational and experimental studies of the characteristics and flow in the air intake model of high-speed civil aircraft HEXAFLY-INT. XXVI Nauchno-tekhnicheskaya konferentsiya po aehrodinamike [XXVI Scientific and technical conference on aerodynamics]. Zhukovskiy, 26–27 February 2015, Zhukovskiy, Tsentral’nyy aehrogidrodinamicheskiy institut im. professora N.E. Zhukovskogo publ., 2015, pp. 78–79.
[17] Gus’kov O.V., Laskin I.N. The use of mathematical modeling methods in the design of advanced hypersonic flying laboratory integrated with the air intake. XIII shkola-seminar «Aehrodinamika letatel’nykh apparatov» [XIII school-seminar “Aerodynamics of aircraft”]. Volodarskogo, 28 February–01 Mach 2002, Zhukovskiy, Tsentral’nyy aehrogidrodinamicheskiy institut im. professora N.E. Zhukovskogo publ., 2002, 41 p.
[18] Abramovich G.N. Prikladnaya gazovaya dinamika [Applied gas dynamics]. Moscow, Nauka. Glavnaya redaktsiya fiziko-matematicheskoy literatury publ., 1976. 237 p.
[19] Zhidkostnye raketnye dvigateli [Liquid-propellant rocket engines]. Ed. Yagodnikov D.A. Moscow, Bauman Press, 2005. 488 p.
[20] Aleksandrov V.Yu., Golovchenko I.Yu., Il’chenko M.A., Sezemin V.A., Serebryakov D.I. Stend dlya izmereniya nagruzok, vozdeystvuyushchikh na ob’’ekt aviatsionnoy tekhniki [Stand for measuring loads affecting the object of aviation equipment]. Patent RF no. 2651627, 2018.