Long-Term Strength Estimation of Zirconia Ceramics
Authors: Aliev A.A. | Published: 14.11.2020 |
Published in issue: #11(728)/2020 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: zirconium dioxide, Norton — Bailey power law, experimental creep constants, power regression equation |
A standard experimental assessment of the service life of high-temperature zirconia ceramics (GOST 4070–2014) requires the use of complicated heating and measuring equipment and hundreds of expensive specimens. This necessitates the development of calculation methods for evaluating long-term strength depending on the thermomechanical loading conditions without carrying out a full range of laboratory tests. The existing experimental estimation models of the primary and secondary creep regimes of ceramics consider the temperature range up to 1600°C, which is lower than zirconia limiting operating temperatures (2000°C and higher). Based on the Norton – Bailey law, long-term strength estimation of fully stabilized zirconia ceramics is carried out. Using previously known experimental data of other authors for ceramics made of fully stabilized zirconia (0.1Y2O3 + 0.9ZrO2), the creep constants values were calculated at high-temperature (1600–1800 °C) loading levels ≤5 MPa. A power-law regression equation with a high degree of correlation that evaluates the creep of the test material under loads up to 20 MPa and temperatures up to 2100 °C is proposed.
References
[1] GOST 4070–2014. Izdeliya ogneupornyye. Metod opredeleniya temperatury deformatsii pod nagruzkoy [State Standart 4070–2014. Refractory products. Method for determination of refractoriness-under-load]. Moscow, Standartinform publ., 2015.
[2] GOST 8179–98. Izdeliya ogneupornyye. Otbor obraztsov i priyemochnyye ispytaniya [State Standart 8179–98. Refractory products. Sampling and acceptance testing]. Moscow, Standartinform publ., 2014.
[3] Pavlov P.A. Osnovy inzhenernykh raschetov elementov mashin na ustalost’ i dlitel’nuyu prochnost’ [Fundamentals of engineering calculations of machine elements for fatigue and long-term strength]. Leningrad, Mashinostroyeniye publ., Leningr. otd-niye, 1988. 252 p.
[4] Zhigachev A.O., Golovin Yu.I., Umrikhin A.V., Korenkov V.V., Tyurin A.I., Rodayev V.V., D’yachek T.A. Keramicheskiye materialy na osnove dioksida tsirkoniya [Ceramic materials based on zirconium dioxide]. Moscow, TEKHNOSFERA publ., 2018. 358 p.
[5] Blond E., Schmitt N., Hild F., Blumenfeld Ph., Poirier J. Modeling of high temperature asymmetric creep behavior of ceramics. Journal of the European Ceramic Society, 2005, vol. 25, pp. 1819–1827, doi: https://doi.org/10.4028/www.scientific.net/AST.45.2308
[6] Chuang T. Estimation of Power-Law Creep Parameters from Bend Test Data. U.S. Department Of Commerce, National Bureau of Standards Center for Materials Science Inorganic Materials Division Gaithersburg, MD 20899, February 1985. 50 p.
[7] Shengli Jin, Harald Harmuth, Dietmar Gruber. Compressive creep testing of refractories at elevated loads — Device, material law and evaluation techniques. Journal of the European Ceramic Society, 2014, vol. 34, pp. 4037–4042, doi: 10.1016/j.jeurceramsoc.2014.05.034
[8] Chevalier J., Olagnon C., Fantozzi G., Gros H. Creep behavior of Alumina, Zirconia and Zirconia-Toughened Alumina. Journal of the European Ceramic Society, 1997, vol. 17, pp. 859–864.
[9] Schneider K., Rekas M. High Temperature Creep of Metal Oxides. Chapter 4, AGH, University of Science and Technology, Krakow, Poland, 2017, doi: http://dx.doi.org/10.5772/intechopen.70876
[10] Rutman D.S., Toropov Yu.S., Pliner S.Yu., Neuymin A.D., Polezhayev Yu.M. Vysokoogneupornyye materialy iz dioksida tsirkoniya [High-resistance materials made of zirconium dioxide]. Moscow, Metallurgiya publ., 1985. 136 p.
[11] Bakunov B.C., Balkevich V.P., Vlasov A.S., Guzman I.Ya., Lukin E.S., Poluboyarinov D.N., Popil’skiy R.Ya. Keramika iz vysokogneupornykh okislov [Ceramics made of highly refractory oxides]. Moscow, Metallurgiya publ., 1977. 304 p.
[12] Dauknis V.I., Kazakavichus K.A., Prantsklyavichus G.A., Yurenas V. Issledovaniye termicheskoy stoykosti ogneupornoy keramiki [Study of the thermal resistance of refractory ceramics]. Vilnius, Mintis publ., 1971. 150 p.
[13] Peras A.Ya., Dauknis V.I. Prochnost’ ogneupornoy keramiki i metody eye issledovaniya [Strength of refractory ceramics and methods of its investigation]. Vilnius, Mokslas publ., 1977. 183 p.
[14] Bocanegra-Bernal M.H., Torre S.D.D.L. Phase transitions in zirconium dioxide and related materials for high performance engineering ceramics. Journal of Materials Science, 2002, vol. 37, no. 3, pp. 4947–4971, doi: 10.1023/A:1021099308957
[15] Betten J. Creep Mechanics. Springer, Berlin, 2008. 52 p.
[16] May D.L., Gordon A.P., Segletes D.S. The application of the Norton–Bailey law for creep prediction through power law regression. Proceedings of ASME Turbo Expo, Turbine Technical Conference and Exposition, June 3–7, 2013, San Antonio, Texas, USA, doi: 10.1115/GT2013-96008
[17] Rutman D.S., Toropov Yu.S., Pliner S.Yu., Neuymin A.D., Polezhayev Yu.M. Vysokoogneupornyye materialy iz dioksida tsirkoniya [High-resistance materials made of zirconium dioxide]. Moscow, Metallurgiya publ., 1985. 136 p.