Analysis of the Anisotropic Heat-Protective Material Application Effectiveness in the Implementation of Trajectories with Multiple Re-entries into the Atmosphere
Authors: Leonov V.V., Zarubin V.S., Ayrapetyan M.A. | Published: 26.01.2021 |
Published in issue: #2(731)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: Moon exploration, glide descent craft, multiple re-entries into the atmosphere, thermal protection coating, anisotropic heat-protective materials |
In the case of full implementation of the programs of studying and developing the Moon, announced in recent years (“Luna”, Artemis, Chang’e), significant increase in cargo turnover between the Moon and the Earth is expected. Therefore the research and development of appropriate spacecrafts and their structural elements is believed to be promising, especially thermal protection coatings ensuring spacecraft safety during movement (descent) in the dense atmosphere layers. A special characteristic of the trajectory of the spacecraft returning from the Moon’s orbit is the closeness of the speed of its entry into the Earth’s atmosphere to the parabolic one. This circumstance significantly complicates solving the problem of creating thermal protection for such a vehicle, because of higher convective and radiative heat flows compared to those acting on orbital landers. The analysis showed that when implementing the trajectory of the return of spacecraft with multiple re-entries into the Earth’s atmosphere, a trajectory can be selected (at least for cargo flights) so that the intensity of heat exchange on the surface of the coating does not exceed the permissible level. In this case, use of modern and advanced anisotropic heat-protective composite materials can reduce the spacecraft surface temperature to a level that does not cause destruction of the thermal protection coating.
References
[1] Artemis. Available at: https://www.nasa.gov/specials/artemis/ (accessed 4 February 2020).
[2] Mann A. China’s Chang’e Program: Missions to the Moon. Available at: https://www.space.com/43199-chang-e-program.html (accessed 1 February 2020).
[3] Bagrov A.V., Mit’kin A.S., Sysoyev V.K., Yudin A.D. Proposal for the development of engineering infrastructure as a key milestone of lunar exploration. Vestnik NPO im. S.A. Lavochkina, 2018, no. 4(42), pp. 24–30 (in Russ.).
[4] Nikitin P.V. Teplovaya zashchita [Thermal protection]. Moscow, MAI publ., 2006. 512 s.
[5] Surzhikov S.T. Raschetnoye issledovaniye aerotermodinamiki giperzvukovogo obtekaniya zatuplennykh tel na primere analiza eksperimental’nykh dannykh [Computational study of aerothermodynamics of hypersonic flow around blunted bodies on the example of experimental data analysis]. Moscow, IPMekh RAN publ., 2011. 192 p.
[6] Kosmicheskiye apparaty [Spacecraft]. Ed. Feoktistov K.P. Moscow, Voyenizdat publ., 1983. 319 p.
[7] Leonov V.V., Grishko D.A. Estimates of the Trajectory Parameters and Thermal Loads for a Ballistic Capsule Returning from the Moon with Multiple Dives into the Earth Atmosphere. Journal of Engineering and Applied Sciences, 2019, vol, 14, iss. 6, pp. 1775–1780, doi: 10.36478/jeasci.2019.1775.1780
[8] Leonov V.V., Grishko D.A., Shvirkina O.S., Ayrapetian М.А, Nikitin, G.A., Blinkov, V.A. Multiple entry trajectory scenarios for returning from the Moon: advantages and disadvantages. Proc. of 70th International Astronautical Congress, 21–25 October 2019, Washington, DC, 2019, v. 2019-October, IAC-19_C1_IP_3_x49850.
[9] Shevelev Yu.D., Syzranova N.G. Influence of chemical reactions on heat transfer in boundary layer. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 2010, vol. 10, no. 2, pp. 91–126 (in Russ.). Available at: http://chemphys.edu.ru/issues/2010-10/articles/325/ (accessed 15 August 2020).
[10] Reviznikov D.L., Sukharev T.Yu. Hypersonic flow around blunted bodies in the atmosphere of Earth and Mars. Comparative analysis of mathematical models. Teplovyye protsessy v tekhnike, 2018, vol. 10, no. 1–2, pp. 5–15 (in Russ.).
[11] Tauber M.E., Grant E.P., Dinesh Prabhu. Stagnation Point Radiative Heating Relations for Venus Entry. NASA Ames Research Center Report No. ARC-E-DAA-TN2887, Virginia, 2012. 6 p.
[12] Golomazov M.M., Ivankov A.A. Software package for the development of thermal protection systems for space vehicles descended in the atmospheres of the planets. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3, pp. 41–53 (in Russ.).
[13] Nomura Sh.K. Determination of the heat flux density at the critical point of a blunt body flowed by a hypersonic flow at small Reynolds numbers. Aerokosmicheskaya tekhnika, 1984, vol. 2, no. 7 (in Russ.).
[14] Provotorov V.P., Stepanov E.A. Approximate dependences for calculating heat transfer on a body streamlined by a hypersonic gas flow. Uchenyye zapiski TSAGI, 1992, vol. 23, no. 2, pp. 25–29 (in Russ.).
[15] Eliseyev A.N., Minenko V.E., Yakushev A.G., Agafonov D.N. Project, Aerodynamic, Thermal and Ballistic Analysis of a Lifting-Body Reentry Vehicle. Nauka i obrazovaniye. MGTU im. N.E. Baumana, 2015, no. 10, pp. 88–125 (in Russ.). Available at: http://engineering-science.ru/doc/815132.html (accessed 20 May 2020), doi: 10.7463/1015.0815132
[16] Osnovy teploperedachi v aviatsionnoy i raketno-kosmicheskoy tekhnike [Fundamentals of heat transfer in aviation and rocket and space technology]. Ed. Avduyevskiy V.S., Koshkin V.K. Moscow, Mashinostroyeniye publ., 1992. 528 p.
[17] Zarubin V.S., Leonov V.V., Zarubin V.S. (ml.) Heating of anisotropic thermal protection coating spherical layer segment. Teplovyye protsessy v tekhnike, 2019, vol. 11, no. 12, pp. 556–563 (in Russ.), doi: 10.34759/tpt-2019-11-12-556-563
[18] Zarubin V.S., Leonov V.V. Heating of an anisotropic insulation layer with hypersonic flow past a spherical blunting. Russian Aeronautics, 2019, vol. 62, no. 1, pp. 81–88, doi: 10.3103/S1068799819010112
[19] Zarubin V.S., Zarubin V.S. ml., Leonov V.V. Uneven surface heating of anisotropic spherical layer. Teplovyye protsessy v tekhnike, 2019, vol. 11, no. 3, pp. 115–123 (in Russ.).
[20] Zarubin V.S., Leonov V.V., Zarubin V.S. (ml.) Temperature state of the anisotropic spherical layer during convective heat exchange with the environment. Herald of the Bauman Moscow State Technical University. Series Natural Sciences, 2019, no. 4, pp. 40–55 (in Russ.), doi: 10.18698/1812-3368-2019-4-40-55
[21] Leonov V.V., Zarubin V.S. Jr. Uneven Heating of the Anisotropic Spherical Layer of the Heat-Protective Coating. AIP Conference Proceedings, 2019, vol. 2171, art. no. 030004, doi: 10.1063/1.5133170
[22] Fialkov A.S., Baver A.I., Sidorov N.M., Chaikun M.I., Rabinovich S.M. Pyrographite (preparation, structure, properties). Russ. Chem. Rev., 1965, vol. 34 (1), pp. 46–58, doi: https://doi.org/10.1070/RC1965v034n01ABEH001405
[23] Svoystva konstruktsionnykh materialov na osnove ugleroda: spravochnik [Properties of carbon-based construction materials: reference]. Ed. Sosedov V.P. Moscow, Metallurgiya publ., 1975. 336 p.
[24] Vaganov A.V., Dmitriyev V.G., Zadonskiy S.M., Kireyev A.Yu., Skuratov A.S., Stepanov E.A. Estimations of low-sized winged reentry vehicle heat regimes on the stage of its designing. Fiziko-khimicheskaya kinetika v gazovoy dinamike, 2007, vol. 5 (in Russ.). Available at: http://chemphys.edu.ru/issues/2007-5/articles/51/
[25] Walker S.P., Daryabeigi K., Samareh J.A., Armand S.C., Perino S.V. Preliminary Development of a Multifunctional Hot Structure Heat Shield. AIAA Paper 2014-0350, 2014, 13 p., doi: 10.2514/6.2014-0350
[26] Samarskiy A.A., Vabishchevich P.N. Vychislitel’naya teploperedacha [Computational heat transfer]. Moscow, Editoral URSS publ., 2003. 784 p.
[27] Vlasova E.A., Zarubin V.S., Kuvyrkin G.N. Priblizhennyye metody matematicheskoy fiziki [Approximate methods of mathematical physics]. Moscow, Bauman Press, 2001. 700 p.
[28] Galanin M.P., Savenkov E.B. Metody chislennogo analiza matematicheskikh modeley [Methods of numerical analysis of mathematical models]. Moscow, Bauman Press, 2018. 592 p.
[29] Gofin M.Ya. Zharostoykiye i teplozashchitnyye konstruktsii mnogorazovykh kosmicheskikh apparatov [Heat-resistant and heat-protective structures of reusable spacecraft]. Moscow, Mir publ., 2003. 671 p.
[30] Gusarova I.A. High-temperature thermal insulation material based on ceramic fibers. Kosmicheskaya nauka i tekhnologiya, 2017, vol. 23, no. 2, pp. 24–31 (in Russ.), doi: https://doi.org/ 10.15407/knit2017.02.024
[31] Polezhayev Yu.V., Frolov G.A. Teplovoye razrusheniye materialov [Thermal destruction of materials]. Kiev, NPM NANU publ., 2005. 288 p.