Development of a Method for Determining Radiant Heat Transfer for Spacecraft Platforms in Near Earth Orbit Flight
Authors: Mikhailovskiy K.V., Gorodetskiy M.A. | Published: 19.02.2021 |
Published in issue: #3(732)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: spacecraft platforms, heat fluxes, orbit parameters, orientation parameters, radiation flux, Earth albedo |
External heat fluxes are the main factor affecting spacecraft in near-earth orbits. These fluxes can vary during orbital motion due to the different orientation of the satellite to the Sun. To develop a method for simulating heat fluxes incident on structural elements of the outer surfaces of a spacecraft, taking into account their operating conditions, is an urgent task. The paper introduces a method for a comprehensive analysis of heat fluxes incident on the structural elements of a spacecraft under conditions in near-earth orbit flight. Within the study, we consider direct and reflected from the Earth solar fluxes of thermal radiation, as well as infrared fluxes of radiation from the Earth and "visible" structural elements. To verify the compiled model, we carried out mathematical simulation of the thermal loading of the outer side of the spacecraft platform, located on the illuminated side of the sun-synchronous orbit. The method will be useful when choosing a working orbit in designing a spacecraft at the stage of technical proposals.
References
[1] Reznik S.V. Topical problems of rocket-space composite structures designing, production and testing. Engineering Journal. Science and Innovation, 2013, no. 3(15) (in Russ.). Available at: http://www.engjournal.ru/catalog/machin/rocket/638.html (accessed 15 April 2020), doi: 10.18698/2308-6033-2013-3-638
[2] Mikhaylovskiy K.V., Prosuntsov P.V., Reznik S.V. Development of highly heat-conducting polymer composite materials for space structures. Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering, 2012, spec. iss. Progressivnyye materialy, konstruktsii i tekhnologii raketno-kosmicheskogo mashinostroyeniya, pp. 98–106 (in Russ.).
[3] Reznik S.V., Prosuntsov P.V., Azarov A.V. Substantiation of the design and layout scheme of a mirror space antenna reflector with high shape stability and low linear density. Inzhenerno-fizicheskiy zhurnal, 2015, vol. 88, no. 3, pp. 674–680 (in Russ.).
[4] Reznik S.V., Novikov A.D. Comparative analysis of the honeycomb and thin-shell space antenna reflectors. MATEC Web of Conferences, 2017, EDP Sciences, p. 01012, doi: 10.1051/matecconf/2017920101292
[5] Mikhaylovskiy K.V., Gorodetskiy M.A. Development of method for determining and correcting parameters of the working orbit of the earth remote sensing satellite. RUDN Journal of Engineering Researches, 2017, vol. 18, no. 3, pp. 361–372 (in Russ.), doi: 10.22363/2312-8143-2017-18-3-361-372
[6] Efanov V.V., Pichkhadze K.M. Proyektirovaniye avtomaticheskikh kosmicheskikh apparatov dlya fundamental’nykh nauchnykh issledovaniy [Design of automatic spacecraft for basic scientific research]. Vol. 1. Moscow, MAI publ., 2012. 526 p.
[7] Alekseyev V.A., Malozemov V.V. Obespecheniye teplovogo rezhima radioelektronnogo oborudovaniya kosmicheskikh apparatov [Ensuring the thermal regime of radio-electronic equipment of spacecraft]. Moscow, MAI publ., 2001. 52 p.
[8] Meseguer J., Perez-Grande I., Sanz-Andres A. Spacecraft thermal control. Woodhead Publishing, 2012. 412 p.
[9] Gilmore D.G. Spacecraft thermal control handbook. The Aerospace Corporation Press, 2002. 836 p.
[10] Karam R.D. Satellite Thermal Control for Systems Engineers. Progress in Astronautics and Aeronautics. American Institute of Aeronautics & Astronautics, 1998. 274 p.
[11] Zaletayev S.V., Kopyatkevich R.M. Software package of a thermal design and an analysis of spacecraft thermal conditions. Kosmonavtika i raketostroyeniye, 2014, iss. 4, pp. 84–91 (in Russ.).
[12] Zaletayev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata [Calculation of heat transfer of a spacecraft]. Moscow, Mashinostroyeniye publ., 1979. 208 p.
[13] Vinokurov D.K. Program of the calculation of the radiation view factors and radiant fluxes from the external sources. Kosmonavtika i raketostroyeniye, 2018, iss. 5, pp. 88–100 (in Russ.).
[14] Vinokurov D.K. Application of multi-scaled calculation models in thermal analysis of vehicle-borne infrared radiometer. Kosmonavtika i raketostroyeniye, 2016, iss. 4, pp. 69–75 (in Russ.).
[15] Vinokurov D.K. Determination of the optimal position of the radiation heat exchanger panel infrared radiometer. Kosmonavtika i raketostroyeniye, 2014, iss. 4, pp. 79–83 (in Russ.).
[16] Kutateladze S.S., Borishanskiy V.M. Spravochnik po teploperedache [Handbook of heat transfer]. Moscow, Gosenergoizdat publ., 1958. 418 p.
[17] Shorin S.N. Teploperedacha [Heat transfer]. Moscow, Vysshaya shkola publ., 1964. 490 p.
[18] Kobranov G.P., Tsvetkov A.P., Belov A.I., Sukhnev V.A. Vneshniy teploobmen kosmicheskikh ob”yektov [External heat exchange of space objects]. Moscow, Mashinostroyeniye publ., 1977. 104 p.
[19] Chebotarev V.E., Kosenko V.E. Osnovy proyektirovaniya kosmicheskikh apparatov informatsionnogo obespecheniya [Basics of designing information support spacecraft]. Krasnoyarsk, SibGAU publ., 2011. 488 p.