Design Optimization of Shape and Layup Sequence of Polymer Composite Load Bearing Elements of Light Aircraft
Authors: Tun Lin Htet, Prosuntsov P.V. | Published: 20.08.2021 |
Published in issue: #9(738)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: tail section, fuselage, load bearing ribs, parametric optimization, topological optimization method, mass reducing, structural layout |
The paper presents the methodology for designing the load bearing elements of tail section of a light aircraft through the sequential application of methods of parametric and topological optimization. First, we analyzed the loads acting on the aircraft at its maneuvering in the vertical and horizontal planes. Then, for these loads, by the parametric optimization method, we selected the locations of ribs of the tail section of the aircraft, which were subsequently used to develop individual forms of ribs based on the topology optimization method. Next, we carried out parametric optimization of layup angles of polymer composite material, intended for the production of ribs. Finally, we developed a structural layout for the load bearing elements of the fuselage, which meets the criteria of minimum weight when restrictions are imposed on the level of stresses in some layers of the composite material.
References
[1] Yu Sun Chul. Proektirovanie i issledovanie konstruktsii gorizontal’nogo opereniya grazhdanskogo transportnogo samoleta. Avtoref. diss. kand. tekh. nauk [Design and research on horizontal tail construction of civil transport aircraft. Abs. kand. tech. sci. diss.]. Moscow, MAI Publ., 2005. 24 p. (In Russ.).
[2] Zhitomirskiy G.I. Konstruktsiya samoletov [Aircraft construction]. Moscow, Mashinostroenie Publ., 2005, 406 p. (In Russ.).
[3] Ageeva T.G., Dudar E.N., Reznik S.V. Complex method for designing wing construction of reusable spacecraft. Tekhnologiya mashinostroeniya, 2021, no. 3, pp. 34–36. (In Russ.).
[4] Reznik S.V., Esetbatyrovich A.S. Composite air vehicle tail fins thermal and stress-strain state modeling. AIP Conf. Proc., 2021, vol. 2318, art. 020012, doi: https://doi.org/10.1063/5.0036561
[5] DA 62. The ultimate flying machine. diamondaircraft.com: website. URL: https://www.diamondaircraft.com/en/private-pilots/aircraft/da62/overview/ (accessed: 15.02.2021).
[6] Suslov Yu.V. Letnaya ekspluatatsiya sistem i tekhnologiya raboty ekipazha samoleta DA 42 [Flight exploitation and work technique for the crew of DA 42 aircraft]. Ul’yanovsk, UVAU GA(I) Publ., 2010. 187 p. (In Russ.).
[7] Chepurnykh I.V. Prochnost’ konstruktsiy letatel’nykh apparatov [Aircraft construction strength]. Komsomol’sk-na-Amure, KnAGTU Publ., 2013. 137 p. (In Russ.).
[8] Aviatsionnye pravila. Chast’ 23. Normy letnoy godnosti grazhdanskikh legkikh samoletov [Aviation rules. Part 23. Civil airworthiness requirements for light aircraft]. Moscow, Mezhgosudarstvennyy aviatsionnyy komitet Publ., 2014. 207 p. (In Russ.).
[9] Podruzhin E.G., Stepanov V.M., Ryabchikov P.E. Konstruirovanie i proektirovanie letatel’nykh apparatov. Fyuzelyazh [Construction and design of aircraft]. Moscow, Yurayt Publ., 2018. 105 p. (In Russ.).
[10] Tarasov Yu.L., Lavrov Yu.L. Raschet na prochnost’ elementov konsul’tatsii samoleta [Strength calculation of aircraft construction elements]. Samara, SGAU Publ., 2000. 112 p. (In Russ.).
[11] Aung P.W., Tatarnikov O.V., Aung N.L. Structural optimization of a light aircraft composite wing. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 709, no. 4, art. 044094, doi: https://doi.org/10.1088/1757-899X/709/4/044094
[12] ANSYS Fluent. ansys.com: website. URL: https://www.ansys.com/products/fluids/ansys-fluent (accessed: 15.02.2021).
[13] Mikhaylovskiy K.V., Baranovski S.V. The methods of designing a polymer composite wing using parametrical modeling. Part 1. The rationale for selecting wing geometry and the calculation of airloads. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2016, no. 12, pp. 106–116, doi: http://dx.doi.org/10.18698/0536-1044-2016-11-86-98 (in Russ.).
[14] Ashikhmina E.R., Prosuntsov P.V. Coupled CFD-based shape optimization of wing of reusable space vehicle of tourist class. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 709, no. 2, art. 022108, doi: 10.1088/1757-899X/709/2/022108
[15] Yeswanth I.V.S., Andrews A.A.E. Parametric optimization of composite drive shaft using Ansys Workbench 14.0. IJMET, 2017, vol. 8, no. 5, pp. 10–23.
[16] Tun Lin Khtet. [Topology design optimization of load bearing elements of aircraft fuselage structure]. Sb. tez. XLIV Akademicheskie chteniya po kosmonavtike. T. 1 [Abs. XLIV Academic readings on Cosmonautics. Vol. 1]. Moscow, Baumana MSTU Publ., 2020, pp. 142–144. (In Russ.).
[17] Tun Lin Htet., Prosuntsov P.V. Parametric and topology optimization of polymer composite load bearing elements of rear part of aircraft fuselage structure. AIP Conf. Proc., 2021, vol. 2318, no. 1, art. 020008, doi: https://doi.org/10.1063/5.0035742
[18] Gui X., Xiao M., Zhang Y., et al. Structural topology optimization based on parametric level set method under the environment of ANSYS secondary development. Adv. Comput. Sci. Res., 2017, vol. 74, pp. 841–850, doi: https://dx.doi.org/10.2991/iccia-17.2017.152