Research on Nonlinear Deformation and Stability of an Aircraft Fuselage Composite Section under Transverse Bending
Authors: Zheleznov L.P., Seriosnov A.N. | Published: 14.09.2021 |
Published in issue: #10(739)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: cylindrical composite shells, nonlinear deformation, shall stability, finite element method |
Currently, there is a lack of studies on the strength and stability of reinforced composite shells, taking into account the momentness and nonlinearity of the initial stress-strain state. Most of the known solutions to the shells stability problems are obtained by analytical and numerical methods, as a rule, in the linear approximation, i.e. in the classical formulation. A developed technique is proposed implementing the finite element method for solving the problems of strength and stability of discrete-reinforced cylindrical shells made of the composite material, taking into account the momentness and nonlinearity of their subcritical stress-strain state. The transverse bending stability of the reinforced aircraft fuselage compartment made of composite material has been investigated. The effect of deformation nonlinearity, stiffness of stringer set, shell thickness on critical loads of the shell instability has been determined.
References
[1] Vasil’yev V.V. Mekhanika konstruktsiy iz kompozitnykh materialov [Mechanics of composite constructions]. Moscow, Mashinostroenie Publ., 1988. 272 p.
[2] Vasil’yev V.V., Bunakov V.A. Proektirovanie setchatykh kompozitnykh tsilindricheskikh obolochek, szhatykh v osevom napravlenii. Konstruktsii iz kompozitsionnykh materialov, 2000, no. 2, pp. 68–77. (In Russ.).
[3] Bakulin V.N., Vinogradov Yu.I. Analytical and asymptotic solution of boundary value problems in the mechanics of deformed shells under concentrated loading. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, 2017, no. 1, pp. 14–20. (In Russ.). (Eng. version: Russ. Aeronaut., 2017, vol. 60, no. 1, pp. 13–20, doi: https://doi.org/10.3103/S1068799817010032)
[4] Dmitriev V.G., Biryukov V.I., Egorova O.V., et al. Nonlinear deforming of laminated composite shells of revolution under finite deflections and normal’s rotation angles. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, 2017, no. 2, pp. 8–15. (In Russ.). (Eng. version: Russ. Aeronaut., 2017, vol. 60, no. 2, pp. 169–176, doi: https://doi.org/10.3103/S1068799817020027)
[5] Zheleznov L.P., Kabanov V.V. Nonlinear deformation and stability of noncircular cylindrical shells under internal pressure and axial compression. Prikladnaya mekhanika i tekhnicheskaya fizika, 2002, vol. 43, no. 4, pp. 161–169. (In Russ.). (Eng. version: J. Appl. Mech. Tech. Phy., 2002, vol. 43, no. 4, pp. 617–621, doi: https://doi.org/10.1023/A:1016066001346)
[6] Boyko D.V., Zheleznov L.P., Kabanov V.V. Nonlinear deformation and stability of discretely-supported egg-shaped cylindrical composite shells under transversal bending and internal pressure. Problemy mashinostroeniya i nadezhnosti mashin, 2014, no. 6, pp. 23–30. (In Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2014, vol. 43, no. 6, pp. 470–476, doi: https://doi.org/10.3103/S1052618814060181)
[7] Vanin G.A., Semenyuk N.P., Emel’yanov R.F. Ustoychivost’ obolochek iz armirovannykh materialov [Shell stability of reinforced materials]. Kiev, Naukova Dumka Publ., 1978. 211 p.
[8] Karmishin A.V., Lyaskovets V.A., Myachenkov V.I., et al. Statika i dinamika obolochechnykh konstruktsiy [Statics and dynamics of shell constructions]. Moscow, Mashinostroenie Publ., 1975. 376 p.
[9] Postnov V.A., Kharkhurim I.Ya. Metod konechnykh elementov v raschetakh sudovykh konstruktsiy [Finite elements method in calculations of ship structures]. Leningrad, Sudostroenie Publ., 1974. 341 p.
[10] Kantorovich L.V., Akilov G.P. Funktsional’nyy analiz v normirovannykh prostranstvakh [Functional analysis in normalized spaces]. Moscow, Fizmatgiz Publ., 1959. 684 p.
[11] Olegin I.P., Maksimenko V.N. Teoreticheskie osnovy metodov rascheta prochnosti elementov konstruktsiy iz kompozitov [Technical basis for computation of component strength of composite constructions]. Novosibirsk, Izd-vo NGTU Publ., 2006. 240 p.
[12] Kabanov V.V. Ustoychivost’ neodnorodnykh tsilindricheskikh obolochek [Stability of non-uniform cylindrical shells]. Moscow, Mashinostroenie Publ., 1982. 256 p.