Multicriteria Optimization of Composite Wing of an Unmanned Aircraft
Authors: Lin Aung Naing, Tatarnikov O.V., Wai Aung Phyo | Published: 28.10.2021 |
Published in issue: #11(740)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: unmanned aircraft, composite wing, load-bearing frame, double-tee spars, wing top skin, bottom skin, multicriteria optimization |
The article considers the results of multicriteria optimization of the unmanned aircraft composite wing. Minimum deflection, mass and normal stresses acting along the reinforcement directions are taken as optimization criteria. The thicknesses of the load-bearing frame elements and wing skin elements were selected as optimization parameters for three types of composites: carbon fiber reinforced plastic (CFRP) based on unidirectional carbon layers, CFRP based on carbon fabric layers, and fiberglass laminate based on E-glass fiberglass. A checking calculation of the optimal composite wing stability was performed using a geometrically nonlinear model. The calculation of the stress-strain state of the wing was performed using an anisotropic linear elastic material model. Calculations were carried out using finite element software packages ANSYS and FEMAP.
References
[1] Ageeva T.G., Ashikhmina E.R., Prosuntsov P.V. Optimization of hybrid composite material structure for wing skin of tourist class reusable space vehicle. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 1, pp. 4–19, doi: http://dx.doi.org/10.18698/0236-3941-2018-1-4-19 (in Russ.).
[2] Ashihmina E.R., Prosuntsov P.V., Reznik S.V. Inter-disciplinary approach to suborbital reusable spaceplane composite wing design. Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1060, no. 1, art. 012021, doi: http://dx.doi.org/10.1088/1757-899X/1060/1/012021
[3] Bespilotnyy letatel’nyy apparat Hermes 450 [Hermes 450 pilotless aircraft]. bp-la.ru: website. URL: https://bp-la.ru/izrailskij-bla-hermes-450 (accessed: 15.06.2021). (In Russ.).
[4] Dlugosz A., Klimek W. The optimal design of UAV wing structure. AIP Conf. Proc., 2018, vol. 1922, no. 1, art. 120009, doi: http://dx.doi.org/10.1063/1.5019124
[5] Nayng L.A., Pkhu V.A., Tatarnikov O.V. Selection of the optimal load bearing wing structure scheme for an unmanned aerial vehicle. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2020, no. 11, pp. 89–95, doi: http://dx.doi.org/10.18698/0536-1044-2020-11-89-95 (in Russ.).
[6] NATO standardization agreement 4671 (Edition. 1) — unmanned aerial vehicle systems airworthiness requirements (USAR). URL: https://www.defense.gouv.fr/content/download/552731/9407958/file/4671eed01.pdf (accessed: 15.06.2021).
[7] Aung P.W., Tatarnikov O., Aung N.L. Approach to optimization of composite aircraft wing structure. Conf. Ser.: Mater. Sci. Eng., 2020, vol. 971, art. 022058, doi: http://dx.doi.org/10.1088/1757-899X/971/2/022058
[8] Chepurnykh I.V. Prochnost’ konstruktsiy letatel’nykh apparatov [Aircraft structural strength]. Komsomol’sk-na-Amure, KnAGTU Publ., 2013. 137 p. (In Russ.).
[9] Rumayshah K.K., Prayoga A., Moelyadi M.A. Design of high-altitude long endurance UAV: structural analysis of composite wing using finite element method. J. Phys.: Conf. Ser., 2018, vol. 1005, art. 012025, doi: https://doi.org/10.1088/1742-6596/1005/1/012025
[10] Das S.K., Roy S. Finite element analysis of aircraft wing using carbon fiber reinforced polymer and glass fiber reinforced polymer. IOP Conf. Ser.: Mater. Sci. Eng., 2018, vol. 402, art. 012077, doi: http://dx.doi.org/10.1088/1757-899X/402/1/012077
[11] Aung P.W., Tatarnikov O., Aung N.L. Structural optimization of a light aircraft composite wing. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 709, no. 4, art. 044094, doi: http://dx.doi.org/10.1088/1757-899X/709/4/044094
[12] Rajadurai M., Vinayagam P., Mohana Priya G., et al. Optimization of ply orientation of different composite materials for aircraft wing. IJAERS, 2017, vol. 4, no. 6, pp. 111–117, doi: http://dx.doi.org/10.22161/ijaers.4.6.13
[13] Htet T.L., Prosuntsov P.V. Parametric and topology optimization of load bearing elements of aircraft fuselage structure. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 934, art. 012029, doi: http://dx.doi.org/10.1088/1757-899x/934/1/012029