Simulation of Small-Size Space Debris Impact on the Protective Shield of a Transformable Trap
Authors: Prosuntsov P.V., Alekseev A.A., Zherebtsova E.O. | Published: 28.10.2021 |
Published in issue: #11(740)/2021 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: spacecraft, space debris, spacecraft shielding, composite materials, hypervelocity impact, Smooth Particle Hydrodynamics |
The growth in the number of space debris, especially small-size debris undetectable by radars, urges the development of protective equipment for the crucial satellites and space station. Passive multilayer shields are the most effective means of protection. As the shields are big, it makes sense to make them out of flexible composite materials that allow them to be deployed in orbit. The article determines the loads acting on the composite load-bearing frame of the trap for small-size debris during impact. For a rational choice of the structural trap layout and optimization of its design parameters it is critical to know these loads. The hypervelocity impact of the projectile on the shield was modeled in the Altair Radioss software package using a combined model based on the Smoothed Particle Hydrodynamic (SPH) method and mesh finite elements. The simulation of the shield penetration at various locations was carried out. For each simulation case, a time history of the reaction force in the attachment point of the protective shield to the load-bearing frame was determined. It was shown that the maximum load of about 2000 N acts for around 6 milliseconds on the joint closest to the impact point for the debris projectile size of 10 mm and velocity of 2 km/s.
References
[1] Adushkin V., Veniaminov S., Kozlov S., et al. Natural and technogeneous contamination of near-Earth space. Acta Astronaut., 2017, vol. 135, pp. 6–9, doi: https://doi.org/10.1016/j.actaastro.2016.12.038
[2] Space debris by the numbers. esa.int: website. URL: https://www.esa.int/Safety_Security/Space_Debris/Space_debris_by_the_numbers#.YBVOzBwF7wE.link (accessed: 04.02.2021).
[3] Adushkin V.V., Aksenov O.Yu., Veniaminov S.S., et al. O populyatsii melkogo kosmicheskogo musora, ee vliyanii na bezopasnost’ kosmicheskoy deyatel’nosti i ekologiyu Zemli [On the small space debris population and its impact on space activities safety and earth ecology]. V: Kosmicheskiy musor: fundamental’nye i prakticheskie aspekty ugrozy [In: Space debris: fundamentals and practical danger aspects]. Moscow, IKI RAN Publ., 2019, pp. 20–32, doi: https://doi.org/10.21046/spacedebris2019-20-32 (in Russ.).
[4] Sokolov V.G., Gorbenko A.V. Analysis of consequences of structural damage to the ISS Russian segment caused by collision with space debris. Kosmicheskaya tekhnika i tekhnologii [Space technique and technologies], 2019, no. 4, pp. 65–76. (In Russ.).
[5] Putzar R., Zheng S., An J., et al. A stuffed Whipple shield for the Chinese space station. Int. J. Impact Eng., 2019, vol. 132, art. 103304, doi: https://doi.org/10.1016/j.ijimpeng.2019.05.018
[6] Cherniaev A., Telichev I. Weight-efficiency of conventional shielding systems in protecting unmanned spacecraft from orbital debris. J. Spacecr. Rockets, 2017, vol. 54, no. 1, pp. 75–89, doi: https://doi.org/10.2514/1.A33596
[7] Dobritsa D.B., Pashkov S.V., Khristenko Yu.F. Study of the efficiency of corrugated mesh shields for spacecraft protection against meteoroids and manmade space debris. Kosmicheskie issledovaniya, 2020, vol. 58, no. 2, pp. 131–137, doi: https://doi.org/10.31857/S0023420620020028 (in Russ.). (Eng. version: Cosmic. Res., 2020, vol. 58, no. 2, pp. 105–110, doi: https://doi.org/10.1134/S0010952520020021 )
[8] Perepelkin K.E. High-strength, high-modulus fibres made from linear polymers: principles of fabrication, structure, properties, and use. Fibre Chem., 2010, vol. 42, no. 3, pp.129–142, doi: https://doi.org/10.1007/s10692-010-9239-2
[9] Zelentsov V.V. Protecting spacecraft fragments from exposure to small debris. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2015, no. 6, URL: http://engineering-science.ru/doc/778339.html (in Russ.).
[10] Selivanov V.V., Gryaznov E.F., Goldenko N.A., et al. Numerical simulation and experimental study of explosive projectile devices. Acta Astronaut., 2017, vol. 135, pp. 56–62, doi: https://doi.org/10.1016/j.actaastro.2017.01.042
[11] Voronov K.E., Telegin A.M., Piyakov A.V., et al. Physical effects applied to micrometeoroids and space debris particles parameters sensors design. Uspekhi prikladnoy fiziki [Advances in Applied Physics], 2020, vol. 8, no. 1, pp. 3–20. (In Russ.).
[12] Tao W., Zhu P., Xu C., et al. Uncertainty quantification of mechanical properties for three-dimensional orthogonal woven composites. Part II: Multiscale simulation. Compos. Struct., 2020, vol. 235, art. 111764, doi: https://doi.org/10.1016/j.compstruct.2019.111764
[13] Li Y., Stier B., Bednarcyk B., et al. The effect of fiber misalignment on the homogenized properties of unidirectional fiber reinforced composites. Mech. Mater., 2016, vol. 92, pp. 261–274, doi: https://doi.org/10.1016/j.mechmat.2015.10.002
[14] Zelentsov V.V., Makhan’kov A.V. A SPH method-based numerical simulation of the space debris fragments interaction with spacecraft structure components. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2017, no. 5, URL: https://elibrary.ru/item.asp?id=30585825 (in Russ.).
[15] Zhao S., Song Z. Modelling and analyses of fiber fabric and fabric-reinforced polymers under hypervelocity impact using smooth particle hydrodynamics. Int. J. Impact. Eng., 2020, vol. 144, art 103586, doi: https://doi.org/10.1016/j.ijimpeng.2020.103586
[16] Deconinck P., Abdulhamid H., Hereil P.L., et al. Experimental and numerical study of submillimeter-sized hypervelocity impacts on honeycomb sandwich structures. Procedia Eng., 2017, vol. 204, pp. 452–459, doi: https://doi.org/10.1016/j.proeng.2017.09.740
[17] Meng S., Taddei L., Lebaal N., et al. Advances in ballistic penetrating impact simulations on thin structures using Smooth Particles Hydrodynamics: a state of the art. Thin-Wall. Struct., 2021, vol. 159, art. 107206, doi: https://doi.org/10.1016/j.tws.2020.107206
[18] Zhou Y., Sun Y., Huang T., et al. SPH-FEM simulation of impacted composite laminates with different layups. Aerosp. Sci. Technol., 2019, vol. 95, art. 105469, doi: https://doi.org/10.1016/j.ast.2019.105469
[19] Kumar Y.B. Design and analysis of a new type of aircraft wing leading edge against bird- bird impact. Res. J. Engineering Sci., 2017, vol. 6, no. 3, pp. 23–47.
[20] Giannaros E., Kotzakolios A., Kostopoulos V., et al. Hypervelocity impact response of CFRP laminates using smoothed particle hydrodynamics method: implementation and validation. Int. J. Impact Eng., 2019, vol. 123, pp. 56–69, doi: https://doi.org/10.1016/j.ijimpeng.2018.09.016
[21] Poniaev S.A., Kurakin R.O., Sedov A.I., et al. Hypervelocity impact of mm-size plastic projectile on thin aluminum plate. Acta Astronaut., 2017, vol. 135, pp. 26–33, doi: https://doi.org/10.1016/j.actaastro.2016.11.011
[22] Becker M., Seidl M., Mehl M., et al. Numerical and experimental investigation of SPH, SPG, and FEM for high-velocity impact applications. 12th Europ. LS-DYNA Conf., 2019. URL: https://www.dynalook.com/conferences/12th-european-ls-dyna-conference-2019/high-speed-impact/becker_isl.pdf (accessed: 04.02.2021).
[23] Di Caprio F., Sellitto A., Saputo S., et al. A sensitivity analysis of the damage behavior of a leading-edge subject to bird strike. Appl. Sci., 2020, vol. 10, no. 22, art. 8187, doi: https://doi.org/10.3390/app10228187
[24] Vignjevic R., De Vuyst T., Campbell J.C. A frictionless contact algorithm for meshless methods. CMES, 2006, vol. 13, no. 1, pp. 35–47.
[25] Du Y., Zhang F., Zhang A., et al. Consequences assessment of explosions in pipes using coupled FEM-SPH method. J. Loss Prev. Process. Ind., 2016, vol. 43, pp. 549–558, doi: https://doi.org/10.1016/j.jlp.2016.07.023
[26] Mikhaylovskiy K., Prosuntsov P. Modelling of thermal and stress-strain state of transformable space structures from hybrid composite materials. MATEC Web Conf., 2018, vol. 194, art. 01039, doi: https://doi.org/10.1051/matecconf/201819401039
[27] Reznik S.V., Prosuntsov P.V., Mikhailovskii K.V. Thermal regime of large space structure with transformable elements from hybrid composite. J. Phys.: Conf. Ser., 2018, vol. 1134, art. 012048, doi: https://doi.org/10.1088/1742-6596/1134/1/012048
[28] Zhelezina G.F., Gulyaev I.N., Solov’yeva N.A. Aramide organic plastics of new generation for aviation designs. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 368–378. (In Russ.).
[29] Lebedeva T.S., Merzlikina T.V., Serova L.D., et al. [Study on structure and properties of aramide fabric and fibre]. Mezhd. nauch. studench. konf. INTEKS-2019 [Int. Sci. Student Conf. INTEKS-2019 ]. Moscow, RGU im. A.N. Kosygina Publ., 2019, pp. 43–46. (In Russ.).
[30] Akkuratov I.L., Alyamovskiy A.I., Vinogradov A.S., et al. Results of studies into the properties of carbon fiber-reinforced plastics based on various polymer binders, viewed as candidates for manufacturing structures for space hardware. Kosmicheskaya tekhnika i tekhnologii [Space technique and technologies], 2018, no. 1, pp. 54–66. (In Russ.).
[31] Mikhailovskii K.V., Reznik S.V., Prosuntsov P.V. Method for modeling the interaction between transformable shells of spacecrafts and small space debris objects. AIP Conf. Proc., 2019, vol. 2171, art. 030017, doi: https://doi.org/10.1063/1.5133183
[32] Prosuntsov P.V., Alekseev A.A., Zherebtsova E.O. Determining loads on small space debris trap’s load-bearing frame in case of hypervelocity impact. AIP Conf. Proc., 2021, vol. 2318, art. 020016, doi: https://doi.org/10.1063/5.0035990
[33] Grigor’yev I.S., Meylikhov E.Z., eds. Fizicheskie velichiny [Physical quantities]. Moscow, Energoatomizdat Publ., 1991. 1232 p. (In Russ.).
[34] Kobylkin I.F., Selivanov V.V. Materialy i struktury legkoy bronezashchity [Materials and structures for light armored protection]. Moscow, Bauman MSTU Publ., 2014. 191 p. (In Russ.).