Employment of an Active Thermal Control System for Developing a Space-Based Antenna Complex Reflector
Authors: Azhevsky Ya.A., Prosuntsov P.V. | Published: 20.03.2022 |
Published in issue: #4(745)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: radar survey, Earth remote sensing, active thermal control system, sandwich panels, orbital flight, carbon heaters |
The article considers a variant of using carbon heating elements for increasing the thermal stability of space-based radar satellite antenna. The effectiveness of such a variant is justified. The radiative-conductive heat transfer of the reflector structure was simulated as part of a flight in a low Earth orbit using carbon heating elements, which showed a decrease in the level of thermal displacements of the reflector mirror from 1.8 to 0.4 mm. The effect of the power and the layout of carbon heating elements on the temperature state of the reflector has been studied. The dimensional stability of its structural elements was assessed.
References
[1] Akliouat H., Smara Y., Bouchemakh L. Synthetic aperture radar image formation process: application to a region of north Algeria. Envisat Symp., 2007, pp. 76–79.
[2] Wang L., Zhang Y. An improved algorithm of range-Doppler for air-borne synthetic aperture radar. Proc. TMEE, 2011, pp. 1713–1716, doi: https://doi.org/10.1109/TMEE.2011.6199542
[3] Capella Space: website. URL: https://www.capellaspace.com/ (accessed: 15.10.2021).
[4] Capella X-SAR. URL: directory.eoportal.org: website. https://directory.eoportal.org/web/eoportal/satellite-missions/content/-/article/capella-x-sar (accessed: 15.10.2021).
[5] KA Capella 2 (Sequoia). URL: https://space.skyrocket.de/doc_sdat/capella-2.htm (accessed: 15.10.2021).
[6] Mirbolouk S., Maghsoodi M., Torabi M. Synthetic aperture radar data processing. IJCSSE, 2013, vol. 3, no. 5, pp. 805–809.
[7] Efimov A.V., Karpov O.A., Tolstov E.F. Sposoby i algoritmy sintezirovaniya apertury antenny pri perekhode k sverkhshirokopolosnym zondiruyushchim signalam [Methods and algorithms for aperture synthesis at transfer to ultra-wideband sounding signals]. Moscow, GUP NPTs Spurt Publ., 2009. (In Russ.).
[8] Mittermayer J., Moreira A. Spotlight SAR data processing using the frequency scaling algorithm. IEEE Trans. Geosci. Remote Sens., 1999, vol. 37, no. 5, pp. 2198–2214, doi: https://doi.org/10.1109/36.789617
[9] Neronskiy L.B., Mikhaylov V.F., Bragin I.V. Mikrovolnovaya apparatura distantsionnogo zondirovaniya poverkhnosti Zemli i atmosfery. Radiolokatory s sintezirovannoy aperturoy antenny. Ch. 2 [Microvawe equipment for Earth and atmosphere remote sensing. Radars with synthesized aperture. P. 2]. Sankt-Petersburg, SPbGUAP Publ., 1999. 220 p. (In Russ.).
[10] Verba V.S., Neronskiy L.B., Osipov V.E. et al. Radiolokatsionnye sistemy zemleobzora kosmicheskogo bazirovaniya [Space-based radar systems for Earth observation]. Moscow, Radiotekhnika Publ., 2010. 680 p. (In Russ.).
[11] Verba V.S., Silkin A.T., Kabanov V.F. Tekhnologii Kontserna "Vega" v interesakh TEK [Technologies of “Vega” concern in TEK interests]. Moscow, Vega Publ., 2007, pp. 115–134. (In Russ.).
[12] Geovany A., Borges G.A., Padilha A. et al. An IMU/magnetometer/GPS-based localization system using correlated Kalman filtering. URL: https://www.researchgate.net/publication/228865673_An_IMUMagnetometerGPSbased_localization_system_using_correlated_Kalman_filtering (accessed: 15.10.2021).
[13] Sokolovic V., Dikic G., Stancic R. Integration of INS, GPS, Magnetometer and barometer for improving accuracy navigation of the vehicle. Def. Sci. J., 2013, vol. 63, no. 5, pp. 451–455, doi: http://dx.doi.org/10.14429/dsj.63.4534
[14] Zhang P., Gu J., Milios E.E. et al. Navigation with IMU/GPS/Digital compass with Un- scented Kalman filter. Int. Conf. Mechatronics & Automation, 2005, pp. 1497–1502, doi: https://doi.org/10.1109/ICMA.2005.1626777
[15] Vasil’yev P.V., Meleshko A.V., Pyatkov V.V. Accuracy improvement of correctable inertial navigation system. Izvestiya vuzov. Priborostroenie [Journal of Instrument Engineering], 2014, vol. 57, no. 12, pp. 15–21. (In Russ.).
[16] Reznik S.V., Prosuntsov P.V., Novikov A.D. Prospects of increasing the dimensional stability and the weight efficiency of mirror space antenna reflectors made of composite materials. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2018, no. 1, pp. 71–83, doi: https://doi.org/10.18698/0536-1044-2018-1-71-83 (in Russ.).
[17] Bitkina E.V., Denisov A.V., Bitkin V.E. Design-engineering methods of creating of dimensionally stable space structures of integrated type made of composite materials tipa. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2012, vol. 14, no. 4–2, pp. 555–560. (In Russ.).
[18] Kondratenkov G.S., ed. Radiovidenie. Radiolokatsionnye sistemy distantsionnogo zondirovaniya Zemli [Radio vision. Radar systems of Earth remote sensing]. Moscow, Radiotekhnika Publ., 2005. 368 p. (In Russ.).
[19] Doerry A.W. Motion measurement for synthetic aperture radar. Technical Report SAND-2015-20818 558254, doi: https://doi.org/10.2172/1167411
[20] Matveev V.V. The engineering analysis of lapses of strapdown inertial navigational system. Izvestiya TulGU. Tekhnicheskie nauki [News of the Tula state university. Technical sciences], 2014, no. 9-2, pp. 251–267. (In Russ.).
[21] Woodman O.J. An introduction to inertial navigation. Technical report UCAM-CL-TR-696, doi: https://doi.org/10.48456/tr-696
[22] MCS Digimat. mscsoftware.ru: website. URL: http://www.mscsoftware.ru/products/digimat (accessed: 15.10.2021).