Nonlinear Deformation and Stability of a Composite Cylindrical Shell under a Combined Loading by a Bending Moment and an Edge Transverse Force
Authors: Zheleznov L.P. | Published: 27.07.2022 |
Published in issue: #8(749)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: cylindrical composite shells, polymer composite materials, nonlinear deformation, buckling mode, finite element method |
Currently, polymer composite materials are widely used in the modern aircraft structures. Their application significantly reduces the weight of the structure, while maintaining its strength and stiffness characteristics. A large number of works have been published on the study of the strength of such structures, but the issues of strength and stability during their nonlinear deformation remain unresolved. There is a small number of works on the study of strength and stability of thin-walled shells made of polymer composite materials. The latter is especially necessary for thin-walled aircraft fuselage structures, where the loss of composite skin stability is unacceptable. The problem of determining the influence of the stacking order of monolayers in a skin on the strength and stability of composite material shells under nonlinear deformation remains unsolved. Methods for calculating the strength and stability of thin-walled composite structures, regarding the nonlinearity of the initial stress-strain state, are not well developed. Therefore, the development of reliable and efficient methods for calculating shells made of composite materials is an urgent task. The article describes solving the problem of strength and stability of cylindrical composite shells under arbitrary loading using finite element methods and Newton-Kantorovich linearization. Critical loads have been determined in the course of solving a geometrically nonlinear problem using the Sylvester criterion. The stability of a circular cylindrical shell made of a polymer composite material has been studied under combined loading by a bending moment and a transverse force. The influence of the nonlinearity of deformation, methods of stacking monolayers on the shell critical loads has been determined.
References
[1] Vasil’yev V.V. Mekhanika konstruktsiy iz kompozitnykh materialov [Mechanics of composite constructions]. Moscow, Mashinostroenie Publ., 1988. 272 p. (In Russ.).
[2] Vasiliev V.V., Morozov E.V. Advanced mechanics of composite materials and structures. Elsevier, 2018. 882 p.
[3] Sapunov V.T. Stability analysis of composite structural components using a safety approach. Kompozity i nanostruktury [Composites and Nanostructures], 2017, vol. 9, no. 1, pp. 45–51. (In Russ.).
[4] Alfutov N.A., Zinov’yev P.A., Popov B.G. Raschet mnogosloynykh plastin i obolochek iz kompozitsionnykh materialov [Calculation of multilayer composite plates and shells]. Moscow, Mashinostroenie Publ., 1984. 264 p. (In Russ.).
[5] Bakulin V.N., Gusev E.L., Markov V.G. Optimal’noe proektirovanie konstruktsiy iz kompozitsionnykh i traditsionnykh materialov [Optimum design of constructions from composites and traditional materials]. Moscow, Fizmatlit Publ., 2008. 256 p. (In Russ.).
[6] Karmishin A.V., Lyaskovets V.A., Myachenkov V.I. et al. Statika i dinamika obolochechnykh konstruktsiy [Statics and dynamics of shell constructions]. Moscow, Mashinostroenie Publ., 1975. 376 p. (In Russ.).
[7] Zheleznov L.P., Ser’yeznov A.N. Nonlinear deformation and stability of the aircraft fuselage composite compartment in torsion. Polet [Flight], 2021, no. 3, pp. 11–20. (In Russ.).
[8] Zheleznov L.P., Ser’yeznov A.N. Nonlinear deformation and stability of the aircraft fuselage composite section under pure bending. Izvestiya VUZov. Aviatsionnaya tekhnika, 2021, no. 3, pp. 22–30. (In Russ.).
[9] Zheleznov L.P. Study of the effect of the monolayers lay-up angles on the composite cylindrical shell stability. Mekhanika kompozitsionnykh materialov i konstruktsiy [Mechanics of Composite Materials and Structures], 2021, vol. 27, no. 3, pp. 382–395. (In Russ.).
[10] Kabanov V.V., Zheleznov L.P. On calculation of cylinder shell using infinite elements method. Prikladnaya mekhanika, 1985, vol. 21, no. 9, pp. 35–38. (In Russ.).
[11] Zheleznov L.P., Kabanov V.V. Nonlinear deformation and stability of noncircular cylindrical shells under internal pressure and axial compression. SO RAN. PMTF, 2002, vol. 43, no. 4, pp. 161–169. (In Russ.). (Eng. version: J. Appl. Mech. Tech. Phys., 2002, vol. 43, no. 4, pp. 617–621).
[12] Boyko D.V., Zheleznov L.P., Kabanov V.V. Nonlinear deformation and stability of discretely-supported egg-shaped cylindrical composite shells under transversal bending and internal pressure. Problemy mashinostroeniya i nadezhnosti mashin, 2014, no. 6, pp. 23–30. (In Russ.). (Eng. version: J. Mach. Manuf. Reliab., 2014, vol. 43, no. 6, pp. 470–476, doi: https://doi.org/10.3103/S1052618814060181)
[13] Postnov V.A., Kharkhurim I.Ya. Metod konechnykh elementov v raschetakh sudovykh konstruktsiy [Finite elements method in calculation of ship constructions]. Leningrad, Sudostroenie Publ., 1974. 341 p. (In Russ.).
[14] Kantorovich L.V., Akilov G.P. Funktsional’nyy analiz v normirovannykh prostranstvakh [Function analysis in normalized spaces]. Moscow, Fizmatgiz Publ., 1959. 684 p. (In Russ.).
[15] Wilkinson J.H., Reinsch C. Handbook for automatic computation. Vol. II. Linear algebra. Springer, 1971. 441 p. (Spravochnik algoritmov na yazyke Algol. Lineynaya algebra. Moscow, Mashinostroenie Publ., 1976. 390 p.)
[16] Olegin I.P., Maksimenko V.N. Teoreticheskie osnovy metodov rascheta prochnosti elementov konstruktsiy iz kompozitov [Theoretical foundations of strength calculation for composite elements of constructions]. Novosibirsk, Izd-vo NGTU Publ., 2006. 240 p. (In Russ.).
[17] Kabanov V.V. Ustoychivost’ neodnorodnykh tsilindricheskikh obolochek [Stability of non-uniform cylinder shells]. Moscow, Mashinostroenie Publ., 1982. 256 p. (In Russ.).