Estimating Cryogenic Tank Cooling Time for a Nitrogen Vapour-Liquid Mixture
Authors: Borschev N.O., Belyavskiy A.E., Yuranev O.A. | Published: 26.08.2022 |
Published in issue: #9(750)/2022 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: radiative and convective heat exchange, nitrogen gas, aluminum tank, convective heat transfer coefficient, methane tank, thermal conductivity equation |
At present, there exists a trend for spacefaring countries to use methane as fuel for the first stages of launch vehicles. Russia is currently developing a promising launch vehicle known as Amur LNG. However, due to methane being a hazardous (flammable and explosive) substance, it is poorly suited for fuel tank strength tests conducted using existing equipment. In this regard, we face an urgent issue of developing a safe method for simulating liquid methane temperature during strength testing of methane tanks. We propose to cool the tank with a nitrogen vapour-liquid mixture. To estimate cooling time for a cryogenic tank treated with a nitrogen vapour-liquid mixture as per the method proposed, along with determining the amount of refrigerant to be used, we solved its thermal state problem using the method of isothermal nodes. This approach may also be used for oxygen tanks.
References
[1] Nilsen C., Meriam S., Meyer S. Purdue liquid oxygen - liquid methane sounding rocket. AIAA Scitech Forum, 2019, doi: https://doi.org/10.2514/6.2019-0614
[2] Percy T., Polsgrove T., Alexander L. et al. Design and development of a methane cryogenic propulsion stage for human mars exploration. AIAA SPACE, 2016, doi: https://doi.org/10.2514/6.2016-5492
[3] Bezotkaznaya, kak avtomat Kalashnikova: metanovaya raketa «Amur» [Dependable as the Kalashnikov gun: “Amur” methane rocket]. roscosmos.ru: website. URL: https://www.roscosmos.ru/29357/ (accessed: 15.02.2022). (In Russ.).
[4] Kalugin K.S., Sukhov A.V. Methane application specifics as a fuel for liquid rocket engines. Vestnik MAI [Aerospace MAI Journal], 2018, vol. 25, no. 4, pp. 120–132. (In Russ.).
[5] Yuranev O.A. Investigating various ways of cooling cryogenic fuel tanks of aerospace equipment. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2018, no. 3, pp. 50–57, doi: http://dx.doi.org/10.18698/0236-3941-2018-3-50-57 (in Russ.).
[6] Vasyukova D.A., Kolozeznyy A.E., Yuranev O.A. Qualification of method for prediction of gas free convection cooling of the full-scaled test article of a launcher cryogenic tank. Polet [Flight], 2015, no. 7, pp. 18–24. (In Russ.).
[7] Vasyukova D.A., Kolozeznyy A.E., Yuranev O.A. Effective approach to control structural tests of cryogenic tanks for advanced launch vehicles. Aviakosmicheskaya tekhnika i tekhnologiya [Aerospace Technology], 2013, no. 1, pp. 23–25. (In Russ.).
[8] Vasyukova D.A., Kolozeznyy A.E., Yuranev O.A. Use of cryogenic helium system for operation temperature simulation in structural test environment for future launch vehicle liquid hydrogen tanks. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2012, no. 2, pp. 179–186. (In Russ.).
[9] Kologov A.V., Usov G.L. Method for analysis of cooldown processes of a liquid rocket engine and propellant tanking. Vestnik NPO Tekhnomash, 2018, no. 4, pp. 62–64. (In Russ.).
[10] Voronov V.A., Karyakina E.D., Akhmerov E.V. Analysis of technical solutions in transport and storage of liquefied natural gas. Vestnik mezhdunarodnoy akademii kholoda [Journal of International Academy of Refrigeration], 2019, no. 3, pp. 15–22, doi: https://doi.org/10.17586/1606-4313-2019-18-3-15-22 (in Russ.).
[11] Galeev A.G., Orlov V.A. Numerical simulation of the stand tank filling process with liquid hydrogen. Polet [Flight], 2019, no. 12, pp. 54–62. (In Russ.).
[12] Firsov V.P., Galeev A.G., Antyukhov I.V. Experimental study of cooling down process and starting a hydrogen liquid rocket engine. Polet [Flight], 2020, no. 2, pp. 3–18. (In Russ.).
[13] Martynenko O.G., Sokovishin Yu.A. Svobodno-konvektivnyy teploobmen [Free convective heat transfer]. Minsk, Nauka i tekhnika Publ., 1982. 399 p. (In Russ.).
[14] Borshchev N.O., Yuranev O.A. Theoretical estimate of cooling time of a liquid hydrogen tank during structural tests. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2021, no. 12, pp. 83–89, doi: http://dx.doi.org/10.18698/0536-1044-2021-12-83-89 (in Russ.).
[15] Bermant A.F., Aramanovich I.G. Kratkiy kurs matematicheskogo analiza. Moscow, Nauka Publ., 1965. 736 p. (In Russ.).
[16] Dekker K., Verwer J.G. Stability of Runge-Kutta methods for stiff nonlinear differential equations. Elsevier, 1984. (Russ. ed.: Ustoychivost’ metodov Runge-Kutty dlya zhestkikh nelineynykh differentsial’nykh uravneniy. Moscow, Mir Publ., 1988. 334 p.)