Key issues of creating the inflatable braking devices for removal of the failed satellites into the atmosphere dense layers Part 1. Conceptual design. Motion in the rarefied atmosphere
Authors: Reznik S.V., Abramova E.N. | Published: 28.04.2023 |
Published in issue: #5(758)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: space debris, near-Earth space cleanup, inflatable braking device, polymer films, rarefied atmosphere, motion simulation |
Development of the near-Earth space is accompanied by space debris appearing in the near-Earth orbits and consisting of artificial satellites, elements of other spacecraft, launch vehicles and upper stages with the exhausted resource. High activity of enthusiasts creating nanosatellites of the CubeSat class forces to make gloomy forecasts of space pollution. To clean the near-Earth space from debris, a variety of projects is proposed that provide for collection of the already accumulated debris and equipping the new generation of rocket and space systems with means for transferring to the burial orbits or into the atmosphere dense layers. Promising means of eliminating space debris include inflatable braking devices designed to transfer the fastened objects into the atmosphere dense layers. The braking device temperature state is formed under the influence of thermal radiation flows from the Sun and the Earth and kinetic heating caused by motion in the rarefied atmosphere. The paper considers options of the conceptual design of an inflatable braking device for nanosatellites of the CubeSat class positioned in the low Earth orbits. Results are provided of simulating motion of the thin-walled spherical shell of the inflatable braking device. Duration of reaching the atmosphere dense layers was estimated.
References
[1] ESA’s annual space environment report. ESA Space Debris Office, 2022. 120 p.
[2] Barkova M.E. The satellite for utilization of space debris in near-earth space. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/published.php?ID=100712 (in Russ.).
[3] Phipps C.R., Baker K.L., Libby S.B. et al. Removing orbital debris with lasers. Adv. Space Res., 2012, vol. 49, no. 9, pp. 1283–1300, doi: https://doi.org/10.1016/j.asr.2012.02.003
[4] Paliy A.S. Methods and means of spacecrafts withdrawal from working orbits (state of the problem). Tekhnicheskaya mekhanika, 2012, no. 1, pp. 94–102. (In Russ.).
[5] Klyushnikov V.Yu. How to remove space debris from near-earth space? Vozdushno-kosmicheskaya sfera [Aerospace Sphere Journal], 2019, no. 1, pp. 96–107, doi: https://doi.org/10.30981/2587-7992-2019-98-1-96-107 (in Russ.).
[6] Paliy A.S. On the effectiveness of aerodynamic braking device for spacecraft maneuvering. Tekhnicheskaya mekhanika, 2012, no. 4, pp. 82–90. (In Russ.).
[7] Paliy A.S. Development of methodology for designing aerodynamic spacecraft de-orbit systems. Vostochno-Evropeyskiy zhurnal peredovykh tekhnologiy [Eastern-European Journal of Enterprise Technologies], 2015, vol. 1, no. 9, pp. 11–15. (In Russ.).
[8] Alpatov A.P., Paliy A.S., Skorik A.D. Aerodynamic systems of space objects withdrawal. Tekhnicheskaya mekhanika, 2015, no. 4, pp. 126–138. (In Russ.).
[9] Ryzhkov V.V., Sulinov A.V. Propulsion systems and low-thrust rocket engines based on various physical principles for control systems of small and micro-spacecraft. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2018, vol. 17, no. 4, pp. 115–128, doi: https://doi.org/10.18287/2541-7533-2018-17-4-115-128 (in Russ.).
[10] Leonov A.G., Zelentsov V.V., Shcheglov G.A. Kosmicheskie apparaty dlya utilizatsii kosmicheskogo musora [Space apparatus for debris utilization]. Moscow, AO VPK «NPO mashinostroeniya» Publ., 2019. 48 p. (In Russ.).
[11] Nakasuka S., Senda K., Watanabe A. et al. Simple and small de–orbiting package for nano-satellites using an inflatable balloon. Trans. Jpn. Soc. Aeronaut. Space. Sci., 2009, vol. 7, no. 26, doi: https://doi.org/10.2322/tstj.7.Tf_31
[12] Nock K., Gates K., Aaron K. Gossamer orbit lowering device (GOLD) for safe and efficient de–orbit. AIAA Paper, 2010, no. 2010–7824, doi: https://doi.org/10.2514/6.2010-7824
[13] Horn A.C. A low cost inflatable CubeSat drag brake utilizing sublimation. MS thesis. Old Dominion University, 2017. 99 p.
[14] Nesterin I.M., Pichkhadze K.M., Sysoev V.K. et al. Proposal for the creature device to deorbit nanosatellites cubesat in low earth orbit. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3, pp. 20–26. (In Russ.).
[15] Finchenko V.S., Ivankov A.A., Shmatov S.I. Project of spacecraft equipped with a debris removal system (aerothermodynamics, bulk-mass characteristics and trajectories of spacecraft descent from near-earth orbits). Vestnik NPO im. S.A. Lavochkina, 2018, no. 1, pp. 10–18. (In Russ.).
[16] Krestina A.V., Tkachenko I.S. A method for selecting design parameters of a small spacecraft de-orbiting system. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2020, no. 8, doi: https://doi.org/10.18698/2308-6033-2020-8-2002 (in Russ.).
[17] Krestina A.V., Tkachenko I.S., Volgin S.S. et al. An aerodynamic de-orbiting system device for small satellites. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 1, doi: https://doi.org/10.18698/2308-6033-2022-1-2143 (in Russ.).
[18] Trofimov S.P. Uvod malykh kosmicheskikh apparatov s nizkikh okolozemnykh orbit. Diss. kand. fiz.-mat. nauk [Small spacecraft drive from low earth orbits. Kand. phys.-math. sci. diss.]. Moscow, IPM imeni M.V. Keldysha Publ., 2015. 125 p. (In Russ.).
[19] Yudin A.D. Razrabotka sposoba uvoda nanosputnikov CubeSat c nizkikh okolozemnykh orbit. Diss. kand. tekh. nauk [Development of a method of removing CubeSat nanosatellites from low Earth orbits. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2021. 139 p. (In Russ.).
[20] Finchenko V.S., Pichkhadze K.M., Efanov V.V. Naduvnye elementy v konstruktsiyakh kosmicheskikh apparatov — proryvnaya tekhnologiya v raketno-kosmicheskoy tekhnike [Inflatable elements in spacecraft structures — breakthrough technology for rocket and space engineering]. Khimki, NPO im. S.A. Lavochkina Publ., 2019. 488 p. (In Russ.).
[21] Kogan M.N. Dinamika razrezhennogo gaza [Dynamics of rarefied gas]. Moscow, Nauka Publ., 1967. 440 p. (In Russ.).
[22] Kovtunenko V.M., Kameko V.F., Yaskevich E.P. Aerodinamika orbitalnykh kosmicheskikh apparatov [Aerodynamics of orbital spacecraft]. Kiev, Naukova dumka Publ., 1977. 156 p. (In Russ.).
[23] Bondarev E.N., Dubasov V.T., Ryzhov Yu.A. Aerogidromekhanika [Aerohydromechanics]. Moscow, Mashinostroenie Publ., 1993. 608 p. (In Russ.).
[24] Barantsev R.G. Skhema izolirovannogo otrazheniya atomov gaza ot tverdoy poverkhnosti [Scheme of isolated reflection of gas atoms from a solid surface]. V: Aerodinamika razrezhennykh gazov. Vyp. 2 [In: Aerodynamics of rarefied gases. Vol. 2]. Leningrad, Izd-vo LGU Publ., 1965, pp. 253–271. (In Russ.).
[25] Barantsev R.G. Vzaimodeystvie razrezhennykh gazov s obtekaemymi poverkhnostyami [Interaction of rarefied gases with streamlined surfaces]. Moscow, Nauka Publ., 1975. 344 p. (In Russ.).
[26] Chernyak V.G. Kinetika razrezhennogo gaza [Kinetics of rarefied gas]. Sankt-Petersburg, Lan, 2018. 540 p. (In Russ.).
[27] Narimanov G.S., Tikhonravov M.K., eds. Osnovy teorii poleta kosmicheskikh apparatov [Fundamentals of spacecraft flight theory]. Moscow, Mashinostroenie Publ., 1972. 608 p. (In Russ.).
[28] Zakirov M.A. Gas-dynamic parameters of free-molecular flow in front of convex and concave bodies. Uchenye zapiski TsAGI, 1971, vol. 2, no. 6, pp. 129–139. (In Russ.).
[29] Favorskiy O.N., Kadaner Ya.S. Voprosy teploobmena v kosmose [Issues of heat exchange in space]. Moscow, Vysshaya shkola Publ., 1972. 300 p. (In Russ.).
[30] Petrov G.I., ed. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchey sredy [Modelling of thermal regimes of spacecraft and environment]. Moscow, Mashinostroenie Publ., 1971. 382 p. (In Russ.).
[31] Zaletaev V.M., Kapinos Yu.V., Surguchev O.V. Raschet teploobmena kosmicheskogo apparata [Calculation of spacecraft heat exchange]. Moscow, Mashinostroenie Publ., 1979. 208 p. (In Russ.).
[32] Kobranov G.P., Tsvetkov A.P., Belov A.I. et al. Vneshniy teploobmen kosmicheskikh obektov [External heat transfer of space objects]. Moscow, Mashinostroenie Publ., 1977. 104 p. (In Russ.).
[33] Panasyuk M.I., Novikov L.S. Model kosmosa. T. 2. Vozdeystvie kosmicheskoy sredy na materialy i oborudovanie kosmicheskikh apparatov [Space model. Т. 2. Space environment impact on spacecraft materials and equipment]. Moscow, KDU, 2007. 1144 p. (In Russ.).
[34] Panshin Yu.A., Malkevich S.G., Dunaevskaya Ts.S. Ftoroplasty [Fluoroplastics]. Leningrad, Khimiya Publ., 1978. 232 p. (In Russ.).
[35] Golomazov M.M., Ivankov A.A. Software package for the development of thermal protection systems for space vehicles descended in the atmospheres of the planets. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3, pp. 41–53. (In Russ.).
[36] GOST 4401–81. Standartnaya atmosfera. Parametry [State standard GOST 4401–81. Standart atmosphere. Parameters]. Moscow, IPK Izd-vo standartov Publ., 2004. 180 p. (In Russ.).
[37] GOST 25645.115–84. The upper atmosphere of the Earth. Model plotnosti dlya ballisticheskogo obespecheniya poletov iskusstvennykh sputnikov Zemli [State standard GOST 25645.115–84. Earth upper atmosphere. Density model for ballistics support of flights of artificial Earth satellites]. Moscow, Izd-vo standartov Publ., 1991. 33 p. (In Russ.).