Key issues of creating the inflatable braking devices for removal of the failed satellites into the atmosphere dense layers Part 2. Analysis of the thermal regime under the combined heating conditions
Authors: Reznik S.V., Abramova E.N. | Published: 30.05.2023 |
Published in issue: #6(759)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: space debris, nanosatellite removal, inflatable braking device, polymer films, temperature state simulation, thermal mode |
The promising solution in reducing pollution of the low Earth orbits by space debris consisting of artificial satellites, other spacecraft and elements of the launch vehicles and upper stages that exhausted their resources lies in introduction of the inflatable braking devices. The simplest version of such a system could be a thin-walled shell made of polymeric material being stored in a folded form in the satellite’s transport container and being inflated at the right time on command acquiring the given configuration. Large area of the shell midsection provides an increase in the braking force in the highly rarefied atmosphere and a decrease in the flight velocity followed by a descent into the atmosphere dense layers for liquidation. Selection of the rational parameters for the braking device inflatable shell provides for solution of rather complex interdisciplinary problems. Among them, the task of determining the inflatable shell temperature state is distinguished, which would be formed exposed to action of the thermal radiation fluxes from the Sun, the Earth and kinetic heating caused by motion in the free molecular medium. Heat transfer specifics of the thin-walled spherical shell of an inflatable braking device designed to remove the obsolete CubeSat-class nanosatellites positioned in the low Earth orbits were considered.
References
[1] Kisilenko V.S., Makarov N.Yu., Marchuk V.A. et al. Space debris in the region of low earth orbits and the Kessler effect. Kosmonavtika i raketostroenie [Cosmonautics and Rocket Engineering], 2022, no. 2, pp. 89–98. (In Russ.).
[2] Ryzhkov V.V., Sulinov A.V. Propulsion systems and low-thrust rocket engines based on various physical principles for control systems of small and micro-spacecraft. Vestnik Samarskogo universiteta. Aerokosmicheskaya tekhnika, tekhnologii i mashinostroenie [Vestnik of Samara University. Aerospace and Mechanical Engineering], 2018, no. 4, vol. 17, pp. 115–128, doi: https://doi.org/10.18287/2541-7533-2018-17-4-115-128 (in Russ.).
[3] Leonov A.G., Zelentsov V.V., Shcheglov G.A. Kosmicheskie apparaty dlya utilizatsii kosmicheskogo musora [Spacecraft to dispose of space debris]. Moscow, VPK NPO Mashinostroeniya Publ., 2019. 48 p. (In Russ.).
[4] Barkova M.E. The satellite for utilization of space debris in near-earth space. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/published.php?ID=100712 (in Russ.).
[5] Pikalov R.S., Yudintsev V.V. Bulky space debris removal means review and selection. Trudy MAI, 2018, no. 100. URL: https://trudymai.ru/published.php?ID=93299 (in Russ.).
[6] Sarego G., Olivieri L., Valmorbida A. et al. Deployment requirements for deorbiting electrodynamic tether technology. CEAS Space J., 2021, vol. 13, no. 4, pp. 567–581, doi: https://doi.org/10.1007/s12567-021-00349-5
[7] Estable S., Pruvost C., Ferreira E. et al. Capturing and deorbiting Envisat with an Airbus Spacetug. Results from the ESA e.Deorbit consolidation phase study. J. Space Saf. Eng., 2020, vol. 7, no. 1, pp. 52–66, doi: http://dx.doi.org/10.1016/j.jsse.2020.01.003
[8] Jason L.F., Aglietti G.S., Fellwes S. et al. The active space debris removal mission RemoveDebris. Part 1: From concept to launch. Acta Astronaut., 2020, vol. 168, pp. 293–309, doi: https://doi.org/10.1016/j.actaastro.2019.09.002
[9] Krestina A.V., Tkachenko I.S., Volgin S.S. et al. An aerodynamic de-orbiting system device for small satellites. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 1, doi: http://dx.doi.org/10.18698/2308-6033-2022-1-2143 (in Russ.).
[10] Yudin A.D. Razrabotka sposoba uvoda nanosputnikov CubeSat c nizkikh okolozemnykh orbit. Diss. kand. tekh. nauk [Developing a way to retract CubeSat nanosatellites from low-Earth orbits. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2021. 139 p. (In Russ.).
[11] Reznik S.V., Abramova E.N. Klyuchevye voprosy sozdaniya naduvnykh tormoznykh ustroystv dlya uvoda vyshedshikh iz stroya sputnikov v plotnye sloi atmosfery. Part 1. Proektnyy oblik. Dvizhenie v razrezhennoy atmosfere. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 5, pp. 101–111, doi: https://dx.doi.org/10.18698/0536-1044-2023-5-101-111 (In Russ.).
[12] Alifanov O.M., Vabishchevich P.N., Mikhaylov V.V. Osnovy identifikatsii i proektirovaniya teplovykh protsessov i system [Fundamentals of identification and design of thermal processes and systems]. Moscow, Logos Publ., 2001. 400 p. (In Russ.).
[13] Katler L. Problems of undirected passive transponder satellites. Raketnaya tekhnika, 1962, no. 9, pp. 109–110. (In Russ.).
[14] Burke J.R. Passive satellite development and technology. Astronautics and Aerospace Engineering, 1963, vol. 1, no. 8, pp. 72–75. (In Russ.).
[15] Wilson A. A history of balloon satellites. J. Br. Interplanet. Soc., 1981, vol. 34, no. 1, pp. 10–22.
[16] Harvey B. Discovering the cosmos with small spacecraft. Springer, 2018. 284 p.
[17] Golomazov M.M., Ivankov A.A. Software package for the development of thermal protection systems for space vehicles descended in the atmospheres of the planets. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3, pp. 41–53. (In Russ.).
[18] Stark J.A., Leonhard K.E., Bennet F.O. Cryogenic thermal control technology summaries. Contractor report NASA CR-134747, 1974. 142 p.
[19] Barry D.G., Jones L.R. Lightweight inflatable shadow shields for cryogenic space vehicles. J Spacecr. Rockets, 1966, vol. 3, no. 5, pp. 722–727, doi: https://doi.org/10.2514/3.28519
[20] Marshall J.E., Jones L.R. Inflatable solar shields for cryogenic space vehicles. Proc. 18-th Int. Astronautical Congress. Vol. 2. London, Pergamon Press, 1968, pp. 229–236.
[21] Clifton J.V., Doughty R.D., Jones L.R. Development and testing of expandable rigidizable solar shields for protection of cryogenic propellants in space. Proc. 11-th AIAA/ASME Structures, Structural Dynamics, and Materials Conf. New York, AIAA, 1970, art. 70A27131.
[22] Dzhons D. [Thermal tests of inflatable solar shields for spacecraft with cryogenic fuel]. V: Teploobmen i teplovoy rezhim kosmicheskikh apparatov [In: Heat transfer and spacecraft thermal control]. Moscow, Mir Publ., 1974, pp. 460–481. (In Russ.).
[23] Hrycak P. Temperature distribution in a spinning spherical space vehicle. AIAA J., 1963, vol. 1, no. 1, pp. 96–99, doi: https://doi.org/10.2514/3.1477
[24] Hrycak P. Influence of conduction on spacecraft skin temperatures. AIAA J., 1963, vol. 1, no. 11, pp. 2619–2621, doi: https://doi.org/10.2514/3.2120
[25] Nichols L.D. Surface-temperature distribution on thin-walled bodies subjected to solar radiation in interplanetary space. Technical note D-584. NASA, 1961. 48 p.
[26] Phythian J.E. Heating of the cavity inside a spherical shell satellite. AIAA J., 1965, vol. 3, no. 1, pp. 151–154, doi: https://doi.org/10.2514/3.2808
[27] Sova G.J., Malmuth N.D. Asymptotic solution for heat conduction in radiating shells subject to discontinuous solar flux. AIAA J., 1969, vol. 7, no. 8, pp. 1631–1633, doi: https://doi.org/10.2514/3.5456
[28] Zarubin V.S. Temperature state of thin spherical shell. Prikladnaya mekhanika i tekhnicheskaya fizika, 1963, vol. 3, no. 6, pp. 169–171. (In Russ.).
[29] Zarubin V.S., Kuvyrkin G.N., Savelyeva I.Yu. Local temperature distribution on the spacecraft surface under uneven solar radiation. Aerokosmicheskiy nauchnyy zhurnal [Aerospace Scientific Journal of the Bauman MSTU], 2015, no. 5. URL: https://www.elibrary.ru/download/elibrary_25352808_84110696.pdf (in Russ.).
[30] Zarubin V.S., Zimin V.N., Kuvyrkin G.N. Temperature distribution in the spherical shell of a gauge-alignment spacecraft. Prikladnaya mekhanika i tekhnicheskaya fizika, 2017, vol. 58, no. 6, pp. 149–157. (In Russ.). (Eng. version: J. Appl. Mech. Tech. Phy., 2017, vol. 58, no. 6, pp. 1083–1090, doi: https://doi.org/10.1134/S0021894417060141)
[31] Favorskiy O.N., Kadaner Yu.S. Voprosy teploobmena v kosmose [Heat transfer issues in space]. Moscow, Vysshaya shkola Publ., 1967. 238 p. (In Russ.).
[32] Steurer W. Material problem in solar sail development. AIAA Paper, 1980, no. 80-0315, doi: https://doi.org/10.2514/6.1980-315
[33] Kogan M.N. Dinamika razrezhennogo gaza [Dynamics of rarefied gas]. Moscow, Nauka Publ., 1967. 440 p. (In Russ.).
[34] Vasilyev A.A., Vorobyev A.G. Issledovanie teploobmena na dlinnykh tsilindrakh, raspolozhennykh pod razlichnymi uglami ataki k nabegayushchemu potoku razrezhennogo gaza [Investigation of heat transfer in long cylinders at different angles of attack to a rarefied gas flow]. V: Aerodinamika razrezhennykh gazov. Vyp. 7 [Aerodynamics of rarefied gases. Vol. 7]. Leningrad, LGU Publ., 1974, pp. 220–227. (In Russ.).
[35] Yudaev B.N., Mikhaylov M.S., Savin V.K. Teploobmen pri vzaimodeystvii struy s pregradami [Heat transfer in interaction of jets with obstacles]. Moscow, Mashinostroenie Publ., 1977. 247 p. (In Russ.).
[36] Yudaev B.N. Teploperedacha [Heat transfer]. Moscow, Vysshaya shkola Publ., 1973. 360 p. (In Russ.).
[37] Petrov G.I., ed. Modelirovanie teplovykh rezhimov kosmicheskogo apparata i okruzhayushchey sredy [Modelling of thermal regimes of spacecraft and environment]. Moscow, Mashinostroenie Publ., 1971. 382 p. (In Russ.).
[38] Reznik S.V., Kalinin D.Yu. Modelirovanie teplovykh rezhimov krupnogabaritnykh konstruktsiy [Modelling of thermal regimes of large-size structures]. Moscow, Bauman MSTU Publ., 2003. 49 p. (In Russ.).
[39] GOST 4401–81. Standartnaya atmosfera. Parametry [State standard GOST 4401-81. Standard atmosphere. Parameters]. Moscow, Izd-vo standartov Publ., 2004. 180 p. (In Russ.).
[40] Vus E.G., Evkin I.V., Polevshchikov M.M. et al. [Usage of the polyimide film in the extreme conditions of operation]. Reshetnevskie chteniya. T. 1 [Reshetnev Readings. Vol. 1]. Krasnoyarsk, SibGU Publ., 2010, pp. 298–299. (In Russ.).
[41] Sheyndlin A.E., ed. Izluchatelnye svoystva tverdykh materialov [Radiation properties of solid materials]. Moscow, Energiya Publ., 1974. 472 p. (In Russ.).
[42] McKeen L.W. Film properties of plastics and elastomers. William Andrew Publ., 2012. 408 p. (Russ. ed.: Svoystva plenok iz plastmass i elastomerov. Sankt-Petersburg, Nauchnye osnovy i tekhnologii Publ., 2014. 528 p.)
[43] Dulnev G.N., Zarichnyak Yu.P. Teploprovodnost smesey i kompozitsionnykh materialov [Thermal conductivity of mixtures and composite materials]. Leningrad, Energiya Publ., 1974. 264 p. (In Russ.).