Key issues in creating inflatable braking devices for removal of the failed satellites into the atmosphere dense layers Part 3. Assessment of the shell resistance to impacts of micrometeorites and elements of small space debris
Authors: Reznik S.V., Mikhailovskiy K.V., Abramova E.N. | Published: 05.09.2023 |
Published in issue: #9(762)/2023 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: space debris, inflatable braking device, polymer film, micrometeoroids, impact resistance, smoothed particle method |
Equipping small spacecraft with the inflatable braking devices is one of the promising approaches to reducing pollution of the near-Earth space from space debris. Principle of the inflatable braking system operation is quite simple: pressurized gas is supplied at the right moment into the shell compactly installed inside the shipping container, the shell opens, and due to its large cross-sectional area, the braking force increases contributing to a decrease in the flight velocity. Because of the weight and size restrictions, the braking system inflatable shell should be made of a thin polymer film. Obviously, such a shell resistance to impacts from micrometeoroids and small space debris would determine viability of the very concept of the inflatable braking devices. Calculation and theoretical estimates of the polymer shells resistance to the aluminum and water ice particles with diameter of 1…30 µm in the range of velocities of 0.5…7.0 km/s were made. It is shown that at the motion velocity of more than 3 km/s, particles with properties of aluminum with diameter of 10 µm or more are posing danger to the shell of a polymer film. Probability of the shell collision with a particle with diameter of 10 ?m in the 300 km high orbit reaches 0.25, which indicates the need for its reinforcement to maintain the shape in the event of a local puncture.
References
[1] Stelzl D., Pfeiffer E.K., Hemme H.G. et al. ADEO: the European commercial passive de-orbit subsystem family enabling space debris mitigation. CEAS Space J., 2021, vol. 13, no. 1, pp. 591–598, doi: https://doi.org/10.1007/s12567-021-00355-7
[2] Boykachev V.N., Khomenko V.V. Plazmennyy dvigatel dlya mikrosputnikov [Plasma engine for microsatellites]. Materialy kruglogo stola “Sozdanie malykh kosmicheskikh apparatov. Aktualnye problemy i puti ikh resheniya” [Proceedings of the round table "Creation of small spacecraft. Actual problems and ways of their solution"]. Istra, NIIEM Publ., 2016, pp. 93–98. (In Russ.).
[3] Nadiradze A.B., Obukhov V.A., Pokryshkin A.I. et al. Modelirovanie silovogo i erozionnogo vozdeystviya ionnogo puchka na krupnyy obekt musora tekhnogennoy prirody. Izvestiya RAN. Energetika, 2016, no. 2, pp. 146–157.
[4] Barkova M.E. The satellite for utilization of space debris in near-earth space. Trudy MAI, 2018, no. 103. URL: https://trudymai.ru/published.php?ID=100712 (in Russ.).
[5] Sarego G., Olivieri L., Valmorbida A. et al. Deployment requirements for deorbiting electrodynamic tether technology. CEAS Space J., 2021, vol. 13, no. 4, pp. 567–581, doi: https://doi.org/10.1007/s12567-021-00349-5
[6] Yao Q., Li Y., Ren Y. et al. Dynamic analysis on the drag sail device of micro-satellite during the deploying process. J. Phys.: Conf. Ser., 2021, vol. 1952, art. 032064, doi: https://doi.org/10.1088/1742-6596/1952/3/032064
[7] Krestina A.V., Tkachenko I.S., Volgin S.S. et al. An aerodynamic de-orbiting system device for small satellites. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 1, doi: https://doi.org/10.18698/2308-6033-2022-1-2143 (in Russ.).
[8] Nesterin I.M., Pichkhadze K.M. Proposal for the creature device to deorbit nanosatellites Cubesat in low earth orbit. Vestnik NPO im. S.A. Lavochkina, 2017, no. 3, pp. 20–26. (In Russ.).
[9] Finchenko V.S., Ivankov A.A., Shmatov S.I. Project of spacecraft equipped with a debris removal system (aerothermodynamics, bulk-mass characteristics and trajectories of spacecraft descent from near-earth orbits). Vestnik NPO im. S.A. Lavochkina, 2018, no. 1, pp. 10–18. (In Russ.).
[10] Yudin A.D. Razrabotka sposoba uvoda nanosputnikov CubeSat c nizkikh okolozemnykh orbit. Diss. kand. tekh. nauk [Development of a method to remove CubeSat nanosatellites from low-Earth orbits. Kand. tech. sci. diss.]. Moscow, MAI Publ., 2021. 139 p. (In Russ.).
[11] Reznik S.V., Abramova E.N. Key issues of creating the inflatable braking devices for removal of the failed satellites into the atmosphere dense layers Part 1. Conceptual design. Motion in the rarefied atmosphere. Izvestiya vysshikh uchebnykh zavedenii?. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 5, pp. 101–111, doi: http://dx.doi.org/10.18698/0536-1044-2023-5-101-111 (in Russ.).
[12] Reznik S.V., Abramova E.N. Key issues of creating the inflatable braking devices for removal of the failed satellites into the atmosphere dense layers Part 2. Analysis of the thermal regime under the combined heating conditions. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 6, pp. 119–132, doi: http://dx.doi.org/10.18698/0536-1044-2023-6-119-132 (in Russ.).
[13] Beregovoy G.T., Yaropolov V.I., Baranetskiy I.I. et al. Spravochnik po bezopasnosti kosmicheskikh poletov [Handbook on safety of space flights]. Moscow, Mashinostroenie Publ., 1989. 336 p. (In Russ.).
[14] GOST 25645.128–85. Veshchestvo meteornoe. Model prostranstvennogo raspredeleniya [State standard 25645.128-85. Meteoric matter. Spatial distribution model]. Moscow, Gosudarstvennyy komitet SSSR po standartam Publ., 1985. 24 p. (In Russ.).
[15] GOST R 25645.167–2005. Kosmicheskaya sreda (estestvennaya i iskusstvennaya). Model prostranstvenno-vremennogo raspredeleniya plotnosti potokov tekhnogennogo veshchestva v kosmicheskom prostranstve [State standard R 25645.167-2005. Space environment (natural and artificial). Model of spatial and time distribution for space debris flux density in LEO]. Moscow, Standartinform Publ., 2005. 45 p. (In Russ.).
[16] Kessler D.J., Reynolds R.C., Anz-Meador P.D. Orbital debris environment for spacecraft designed to operate in low Earth orbit. NASA, 1989. 22 p.
[17] Reynolds R.C., Potter A.E. Orbital debris research at NASA Johnson Space Center. NASA, 1989. 68 p.
[18] ESABASE2 / Debris. esabase2.net: website. URL: https://esabase2.net/product/esabase2-debris/ (accessed: 05.06.2023).
[19] Drolshagen G. Meteoroid/debris impact analysis application to LDEF, EURECA and Columbus. Proc. 1-st Europ. Conf. on Space Debris, 1993, pp. 515–522.
[20] Kuiper W., Drolshagen G., Noomen R. Micro-meteoroids and space debris impact risk assessment for the ConeXpress satellite using ESABASE2/Debris. Adv. Space Res., 2010, vol. 45, no. 5, pp. 683–689, doi: https://doi.org/10.1016/j.asr.2009.10.020
[21] Mironov V.V., Tolkach M.A. Models of meteoroid environment in near-earth space and determination of the meteoroid flux density. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2017, no. 2, pp. 49–62. (In Russ.).
[22] Horstmann A., Manis A., Braun V. et al. Flux comparison of MASTER-8 and ORDEM 3.1 modelled space debris population. Proc. 8-th Europ. Conf. on Space Debris (virtual), 2021. URL: https://conference.sdo.esoc.esa.int/proceedings/sdc8/paper/11/SDC8-paper11.pdf
[23] Klinkrad H. Space debris. Springer, 2006. 430 p.
[24] Kurenkov V.I. [Mathematical models for estimation of damage area of optical elements of spacecrafts under the impact of meteoric and man-made particles]. Upravlenie dvizheniem i navigatsiya letatelnykh apparatov. Tr. X Vseros. nauch. tekh. seminara [Motion control and navigation of aircraft. Proc. X Russ. Sci. and Tech. Seminar.]. Samara, SGAU Publ., 2002, pp. 232–236. (In Russ.).
[25] Dobritsa B.T., Dobritsa D.B., Yashchenko B.Yu. Improvement of methods for evaluating the spacecraft pressure wall penetration probability. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2017, no. 7, doi: http://dx.doi.org/10.18698/2308-6033-2017-7-1633 (in Russ.).
[26] Nazarenko A.I. Modelirovanie kosmicheskogo musora [Modeling of space debris]. Moscow, IKI RAN Publ., 2013. 216 p. (In Russ.).
[27] Kinslow R. High-velocity impact phenomena. Academic Press, 1970. 579 p. (Russ. ed.: Vysokoskorostnye udarnye yavleniya. Moscow, Mir Publ., 1973. 533 p.)
[28] Mironov V.V., Tolkach M.A. Ballistic limit equations to optimize the system for spacecraft protection against micrometeoroids and space debris. Kosmicheskaya tekhnika i tekhnologii [Space Technique and Technologies], 2016, no. 3, pp. 26–42. (In Russ.).
[29] Novikov L.S. Vozdeystvie tverdykh chastits estestvennogo i iskusstvennogo proiskhozhdeniya na kosmicheskie apparaty [Impact of naturally occurring and man-made particulate matter on spacecraft]. Moscow, Universitetskaya kniga Publ., 2009. 104 p. (In Russ.).
[30] Kraus E.I., Shabalin I.I. Impact of high velocity technogenic debris on complex technical objects and their elements. Issledovaniya naukograda, 2016, no. 3–4, pp. 6–11. (In Russ.).
[31] Kharchenko E.F., Ermolenko A.F. Kompozitnye, tekstilnye i kombinirovannye bronematerialy. T. 1. Mekhanizmy vzaimodeystviya s ballisticheskimi porazhayushchimi elementami [Composite, textile and combined armour materials. Vol. 1. Mechanisms of interaction with ballistic striking elements]. Moscow, TsNIISM Publ., 2013. 295 p. (In Russ.).
[32] Kharchenko E.F., Ermolenko A.F. Kompozitnye, tekstilnye i kombinirovannye bronematerialy. T. 2. Sovremennye zashchitnye struktury i sredstva individualnoy bronezashchity [Composite, textile and combined armour materials. Т. 2. Modern protective structures and means of individual armour protection]. Moscow, TsNIISM Publ., 2014. 332 p. (In Russ.).
[33] Goldenko N.A. Raschetno-eksperimentalnye metody issledovaniya prochnosti transformiruemykh moduley orbitalnykh stantsiy pri vozdeystvii oskolochno-meteoroidnoy sredy. Diss. kand. tekh. nauk [Calculation-experimental methods of research of strength of transformable modules of orbital stations at influence of fragment-meteoroid environment. Kand. tech. sci. diss.]. Moscow, MGTU GA Publ., 2017. 169 p. (In Russ.).
[34] Burke J.R. Passive satellite development and technology. Astronautics and Aerospace Engineering, 1963, vol. 1, no. 8, pp. 72–75.
[35] Wilson A. A history of balloon satellites. J. of the Brit. Interplanet. Soc., 1981, vol. 34, no. 1, pp. 10–22.
[36] Marshall J.E., Jones L.R. Inflatable solar shields for cryogenic space vehicles. Proc. 18-th Int. Astronautical Congress. Vol. 2. London, Pergamon Press, 1968, pp. 229–236.
[37] Lucas J.W. Thermal testing of inflatable solar shields for cryogenic space. In: Heat transfer and spacecraft thermal control. MIT, 1971, pp. 580–600. (Russ. ed.: Teplovye ispytaniya naduvnykh solnechnykh ekranov dlya kosmicheskikh apparatov s kriogennym toplivom. V: Teploobmen i teplovoy rezhim kosmicheskikh apparatov. Moscow, Mir Publ., 1974, pp. 460–481.)
[38] Musokhranov M.V., Titov A.I. Metals used in the rocket and space technology. Elektronnyy zhurnal: nauka, tekhnika i obrazovanie, 2019, no. 1. URL: https://nto-journal.ru/catalog/mashinostroenie/670/ (in Russ.).
[39] Konovalov S.V. Overview of the physical and mechanical properties of ice. Vestnik nauki i obrazovaniya, 2020, no. 89–1, pp. 34–39. (In Russ.).
[40] Monaghan J.J. Smoothed particle hydrodynamics. Annu. Rev. Astron. Astrophys., 1992, vol. 30, pp. 543–574.
[41] Monaghan J.J. Simulating free surface flows with SPH. J. Comput. Phys., 1994, vol. 110, no. 2, pp. 399–406, doi: https://doi.org/10.1006/jcph.1994.1034
[42] Liu Y., Wang Z., Fan L., Chen Y. Study on central tearing properties of Kapton membrane. Research Square, doi: https://doi.org/10.21203/rs.3.rs-2555872/v1