Constructing a turbine blade damage accumulation model for accounting the long-term operating time
Authors: Sapronov D.V., Khudyakova A.D., Semenov A.V., Kosovsky D.V., Selivanov A.N. | Published: 16.11.2024 |
Published in issue: #11(776)/2024 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: damage accumulation model, turbine blade service life, operating time, long-term strength, material creep |
To improve reliability in forecasting durability of the gas turbine engines and installations turbine blades, it becomes necessary to construct a mathematical model describing the damage accumulation process under the operating conditions. The paper proposes a model of the turbine blade damage accumulation built using the thermodynamic model. Thermodynamic model connects external (external temperature at the gas turbine engine inlet and power) and internal (gas temperature behind the compressor and turbine, rotation speed) parameters. The damage accumulation model takes into account actual decrease in the long-term strength of the turbine blade material. Using the proposed model, a virtual operation of the gas turbine unit turbine blade was carried out at the maximum power. The accumulated damage dependences on the external air temperature were obtained.
EDN: HTCNKO, https://elibrary/htcnko
References
[1] Velikanova N.P., Velikanov P.G., Kiselev A.S. Effect of atmospheric conditions for use durability of the turbine disk gas turbine engines. Aviatsionno-kosmicheskaya tekhnika i tekhnologiya [Aerospace Technic and Technology], 2013, no. 9, pp. 150–154. (In Russ.).
[2] Velikanova N.P., Zakiev F.K. Comparative analysis of strength reliability of turbine working blades of large-life aircraft GTE turbines. Vіsnik dvigunobuduvannya, 2006, no. 3, pp. 80–84. (In Russ.).
[3] Birger I.A., Shorr B.F., Demyanushko I.V. Termoprochnost detaley mashin [Thermoproofness of machine parts]. Moscow, Mashinostroenie Publ., 1975. 455 p. (In Russ.).
[4] Bondar V.S., ed. Resurs materialov i konstruktsiy [Resource of materials and constructions]. Moscow, Moskovskiy Politekh Publ., 2019. 190 p. (In Russ.).
[5] Kolotnikov M.E. Predelnye sostoyaniya detaley i prognozirovanie resursa gazoturbinnykh dvigateley v usloviyakh mnogokomponentnogo nagruzheniya [Limit states of parts and prediction of gas turbine engines resource under conditions of multicomponent loading]. Rybinsk, RGATA Publ., 2003. 134 p. (In Russ.).
[6] Fedorchenko D.G. Development of methods to assess the resource details of aviation turbine engine under multicomponent loading. Izvestiya Samarskogo nauchnogo tsentra RAN [Izvestia RAS SamSC], 2013, no. 6, pp. 148–154. (In Russ.).
[7] Feodosyev V.I. Soprotivlenie materialov [Strength of materials]. Moscow, Bauman MSTU Publ., 1999. 592 p. (In Russ.).
[8] Vasilyev B.E. Chislennoe modelirovanie zadach dinamiki i prochnosti detaley gazoturbinnykh ustanovok i dvigateley [Numerical modelling of problems of dynamics and strength of gas turbine and engine parts]. Moscow, Bauman MSTU Publ., 2018. 177 p. (In Russ.).
[9] Potapov S.D. Chislennoe modelirovanie i eksperimentalnoe issledovanie napryazhennosti vrashchayushchikhsya elementov turbokompressorov. Ch. 1 [Numerical modelling and experimental investigation of the stresses of rotating elements of turbochargers. P. 1]. Penza, Inform.-izd. tsentr PenzGU, 2002. 236 p. (In Russ.).
[10] Tarasov E.V., Balyk V.M. Metody proektirovaniya letatelnykh apparatov [Methods of designing of flying machines]. Moscow, Vuzovskaya kniga Publ., 2011. 322 p. (In Russ.).
[11] Vasilyev B.E. Study of creeping effect on prolonged strength in operation of turbine blades at several stationary modes. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2011, no. 3, pp. 78–87. (In Russ.).
[12] Fedorchenko D.G. Methods and development control systems resource depletion CCD of use. Vestnik UGATU, 2015, no. 1, pp. 55–61. (In Russ.).
[13] Vasilyev B., Nikolaev S., Raevskiy M. et al. Residual life prediction of gas-engine turbine blades based on damage surrogate-assisted modeling. Appl. Sci., 2020, vol. 10, no. 23, art. 8541, doi: https://doi.org/10.3390/app10238541
[14] Gurevich O.S., ed. Sistemy avtomaticheskogo upravleniya aviatsionnymi GTD [Systems of automatic control of aviation GTE]. Moscow, Torus press Publ., 2011. 208 p. (In Russ.).
[15] Programma dlya formirovaniya funktsionalnoy modeli ucheta nakopleniya povrezhdaemosti lopatok turbin («Povrezhdaemost onlayn») [Program for formation of a functional model for accounting of damage accumulation of turbine blades ("Damage online")"]. Software reg. certificate RU 2019664333Z. Appl. 18.10.2019. (In Russ.).
[16] Pillai P., Kaushik A., Bhavikatti S. et al. A hybrid approach for fusing physics and data for failure prediction. IJPHM, 2016, vol. 7, no. 4, pp. 1–12, doi: https://doi.org/10.36001/ijphm.2016.v7i4.2463
[17] Schluse M., Rossman J. From simulation to experimentable digital twins: simulation-based development and operation of complex technical systems. IEEE ISSE, 2016, p. 134, doi: https://doi.org/10.1109/SysEng.2016.7753162
[18] Vasilyev B.E., Semenov A.V., Kinzburskiy V.S. et al. Sposob otsenki tekhnicheskogo sostoyaniya lopatok turbiny gazoturbinnogo dvigatelya [Method of estimating technical condition of turbine blades of a gas-turbine engine]. Patent RU 2725299. Appl. 29.01.2020, publ. 30.06.2020. (In Russ.).
[19] Vasilyev B., Selivanov A. Numerical method of single-crystal turbine blade static strength estimation taking into account plasticity and creep effects. Mater. Phys. Mech., 2019, vol. 42, no. 3, pp. 311–322, doi: http://dx.doi.org/10.18720/MPM.4232019_6
[20] Segerlind L.J. Applied finite element analysis. Wiley, 1984. 411 p. (Russ. ed.: Primenenie metoda konechnykh elementov. Moscow, Mir Publ., 1979. 392 p.)