Theoretical and numerical determination of the polymer composite material permeability by the multiscale simulation approach. Part 2. GFRP
Authors: Prosuntsov P.V., Polskiy P.V. | Published: 09.03.2025 |
Published in issue: #3(780)/2025 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: polymer composite material, fiberglass homogeneous characteristics, dielectric characteristics, representative volume element, multiscale simulation, electromagnetic radiation |
The paper formulates homogenization stages of a polymer composite material based on the fiberglass and epoxy binder using the multiscale simulation. It develops a mathematical model of the electromagnetic radiation transfer in the polymer composite material strengthened by the fiberglass making it possible to analyze the fiberglass parameters influence on the electric field strength, as the electromagnetic wave passes through the sample. The paper provides the inverse problem statement to determine the material homogeneous electrophysical characteristics. It proposes a computation model of the electromagnetic radiation passing through the thread volume representative element and the multilayer fiberglass package. Solving the inverse problem makes it possible to determine homogeneous electrophysical characteristics of the thread volume representative element and of the multilayer fiberglass package. The fiberglass model is validated by comparing the dielectric permeability computed values with the experimental data, and the difference in characteristics is not exceeding 6 %).
EDN: CHKRVB, https://elibrary/chkrvb
References
[1] Li X. Eddy current techniques for non-destructive testing of carbon fibre reinforced plastic (CFRP). PhD thesis. University of Manchester, 2012. 185 p.
[2] Yin W., Li X., Withers P.J. et al. Non-contact characterization of hybrid aluminium/carbonfibre-reinforced plastic sheets using multi-frequency eddy-current sensors. Meas. Sci. Technol., 2010, vol. 21, no. 10, art. 105708, doi: https://doi.org/10.1088/0957-0233/21/10/105708
[3] Meng F., Pickering S.J., McKechnie J. An environmental comparison of carbon fibre composite waste end-of-life options. SAMPE Europe Conf., 2018. URL: https://www.nasampe.org/store/ViewProduct.aspx?ID=13877922 (accessed: 15.06.2024).
[4] Suzuki T., Takahashi J. LCA of lightweight vehicles by using CFRP for mass-produced vehicles. Proc. 15th Conf. on Composite Materials, 2005. URL: http://j-t.o.oo7.jp/publications/050627TS.pdf (accessed: 15.06.2024).
[5] Sun X., Liu J., Lu B. et al. Life cycle assessment-based selection of a sustainable lightweight automotive engine hood design. Int. J. Life Cycle Assess., 2017, vol. 22, no. 9, pp. 1373–1383, doi: https://doi.org/10.1007/s11367-016-1254-y
[6] Mrazova M. Advanced composite materials of the future in aerospace industry. Incas Bull., 2013, vol. 5, no. 3, pp. 139–150, doi: http://dx.doi.org/10.13111/2066-8201.2013.5.3.14
[7] Quilter A. Composites in aerospace applications. IHS, 2001. 5 p.
[8] Ibrahim M.E. Nondestructive evaluation of thick-section composites and sandwich structures. A review. Compos. Part A Appl. Sci. Manuf., 2014, vol. 64, pp. 36–48, doi: https://doi.org/10.1016/j.compositesa.2014.04.010
[9] Loyola B.R., La Saponara V., Loh K.J. In situ strain monitoring of fiber-reinforced polymers using embedded piezoresistive nanocomposites. J. Mater. Sci., 2010, vol. 45, no. 24, pp. 6786–6798, doi: https://doi.org/10.1007/s10853-010-4775-y
[10] Marsh G. Airbus A350 XWB update. Reinf. Plast., 2010, vol. 54, no. 6, pp. 20–24, doi: https://doi.org/10.1016/S0034-3617(10)70212-5
[11] Kotik A., Usyukin V., Vinogradov I. et al. Simulation of reflecting surface deviations of centimeter-band parabolic space radiotelescope (SRT) with the large-size mirror. Proc. SPIE, 2017, vol. 105671, art. 105671A, doi: https://doi.org/10.1117/12.2308118
[12] Belenkov E.S., Prosuntsov P.V., Reznik S.V. Thermophysical processes models in composite workpieces processed by microwave radiation. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 683, art. 012029, doi: https://doi.org/10.1088/1757-899X/683/1/012029
[13] Kwak M. Microwave curing of carbon-epoxy composites: process development and material evaluation. London, Imperial College, 2016. 175 p. doi: https://doi.org/10.25560/39284
[14] Wang Y., Wen Z., Long L. et al. Dielectric response and microwave absorption properties of SiC whisker coated carbon fibers. J. Mater. Sci.: Mater. Electron., 2019, 30, pp. 15075–15083, doi: https://doi.org/10.1007/s10854-019-01880-2
[15] Li Z., Haigh A., Soutis C. et al. X-band microwave characterisation and analysis of carbon fibre-reinforced polymer composites. Compos. Struct., 2019, vol. 208, pp. 224–232, doi: https://doi.org/10.1016/j.compstruct.2018.09.099
[16] Khan J.B., Smith A.C., Tuohy P. et al. Experimental electrical characterisation of carbon fibre composites for use in future aircraft applications. IET Sci. Meas. Technol., 2019, vol. 13, no. 8, pp. 1131–1138, doi: https://doi.org/10.1049/iet-smt.2018.5601
[17] Babenko A.N., Gromyko A.N. Elektromagnitnye polya i volny [Electromagnetics fields and waves]. Yoshkar-Ola, MarGTU Publ., 2003. 370 p. (In Russ.).