Combined effect of the climatic factors and impact damage on strength of the polymer composite plates
Authors: Mitryaykin V.I., Bezzametnov O.N., Kuznetsov M.E., Nosov D.A., Tazhibaeva A.V. | Published: 18.07.2025 |
Published in issue: #7(784)/2025 | |
Category: Aviation, Rocket and Technology | Chapter: Aircraft Strength and Thermal Modes | |
Keywords: polymer composite materials, climatic testing, non-destructive testing, impact damage, plate strength |
The paper presents results of studying properties of the B180 carbon fiber after exposure to the humid climate conditions. The study was conducted together with the Joint Vietnam-Russia Tropical Science and Technology Research Center. The ultimate strength and elastic moduli values under tension and compression of the material before and after exposure to the climatic factors were determined. A decrease in the ultimate strength under compression and tension, and an increase in the elasticity modulus were found. The effect of humid climate on the strength of plates with the impact damage under compression was estimated by comparing critical loads with plates having the same damage, but without exposure to the climatic factors. It was found that critical loads after a long stay in areas with the humid climate were decreasing.
EDN: RPIIFE, https://elibrary/rpiife
References
[1] Natsionalnaya programma razvitiya Dalnego Vostoka. Rasporyazhenie Pravitelstva Rossiyskoy Federatsii ot 24 sentyabrya 2020 goda no. 2464-r. URL: http://static.government.ru/media/files/NAlSPJ8QMRZUPd9LIMWJoeVhn1l6eGqD.pdf
[2] Kablov E.N., Startsev V.O. Systematical analysis of the climatics influence on mechanical properties of the polymer composite materials based on domestic and foreign sources (review). Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2018, no. 2, pp. 47–58, doi: https://doi.org/10.18577/2071-9140-2018-0-2-47-58 (in Russ.).
[3] Stonton R. Vliyanie okruzhayushchey sredy na svoystva kompozitsionnykh materialov [Environmental effects on the properties of composite materials]. V: Spravochnik po kompozitsionnym materialam. Kn. 2 [In: Handbook of composite materials. Vol. 2]. Moscow, Mashinostroenie Publ., 1988, pp. 280–301. (In Russ.).
[4] Okolnikova G.E., Bronnikov D.A., Shchedrin N.I. Using a carbon fiber in the constructions of wind power stations. Sistemnye tekhnologii [System Technologies], 2018, no. 27, pp. 60–63. (In Russ.).
[5] Laptev A.B., Barbotka S.L., Nikolaev E.V. The main research areas of the persistence properties of materials under the influence of climatic and operational factors. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2017, no. S, pp. 547–561, doi: https://doi.org/10.18577/2071-9140-2017-0-S-547-561 (in Russ.).
[6] Evdokimov A.A., Petrova A.P., Pavlovskiy K.A. et al. The influence of climatic ageing on the properties of PCM-based epoxy resin systems. Trudy VIAM [Proceedings of VIAM], 2021, no. 3, pp. 128–136, doi: https://doi.org/10.18577/2307-6046-2021-0-3-128-136 (in Russ.).
[7] Gladkikh A.V., Kurs I.S., Kurs M.G. Analysis of the data of full-scale climatic tests combined with the application of operational factors of nonmetallic materials (review). Trudy VIAM [Proceedings of VIAM], 2018, no. 10, pp. 74–82, doi: https://doi.org/10.18577/2307-6046-2018-0-10-74-82 (in Russ.).
[8] Kablov E.N., Kirillov V.N., Zhirnov A.D. et al. Centres for climatic testing of aircraft PCMs. Aviatsionnaya promyshlennost [Aviation Industry], 2009, no. 4, pp. 36–46. (In Russ.).
[9] Belec L., Nguyen T.H., Nguyen D.L. et al. Comparative effects of humid tropical weathering and artificial ageing on a model composite properties from nano- to macro-scale. Compos. Part A Appl. Sci. Manuf., 2015, vol. 68, pp. 235–241, doi: https://doi.org/10.1016/j.compositesa.2014.09.028
[10] Gu X., Dickens B., Stanley D. et al. Linking accelerating laboratory test with outdoor performance results for a model epoxy coating system. In: Service life prediction of polymeric materials. Springer, 2009, pp. 3–28, doi: https://doi.org/10.1007/978-0-387-84876-1_1
[11] Lopresto V., Caprino G. Damage mechanisms and energy absorption in composite laminates under low velocity impact loads. In: Dynamic failure of composite and sandwich structures. Springer, 2013, pp. 209–289, doi: https://doi.org/10.1007/978-94-007-5329-7_6
[12] Malhotra A., Guild F.J. Impact damage to composite laminates: effect of impact location. Appl. Compos. Mater., 2014, vol. 21, no. 1, pp. 165–177, doi: https://doi.org/10.1007/s10443-013-9382-z
[13] Doan Chak Luat, Dudchenko A.A., Lurye S.A. Modeling of the properties degradation due to cracking and delamination for the static and cyclic loadings. Mekhanika kompozitsionnykh materialov i konstruktsiy, 2008, vol. 14, no. 4, pp. 623–637. (In Russ.).
[14] Bokhoeva L.A. Osobennosti rascheta na prochnost elementov konstruktsiy iz izotropnykh i kompozitsionnykh materialov s dopustimymi defektami [Peculiarities of strength calculation of structural elements made of isotropic and composite materials with permissible defects]. Ulan-Ude, Izd-vo VSGTU Publ., 2007. 191 p. (In Russ.).
[15] Muc A., Stawiarski A. Identification of damages in composite multilayered cylindrical panels with delamination’s. Compos. Struct., 2012, vol. 94, no. 5, pp. 1871–1879, doi: https://doi.org/10.1016/j.compstruct.2011.11.026
[16] Paimushin V.N., Kayumov R.A., Kholmogorov S.A. Degradation of the mechanical properties of fiber reinforced plastic under cyclic loading. Mech. Compos. Mater., 2023, vol. 59, no. 2, pp. 371–380, doi: https://doi.org/10.1007/s11029-023-10101-1
[17] Erasov V.S., Krylov V.D., Panin S.V. et al. Drop-weight impact testing of polymer composite material. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2013, no. 3, pp. 60–64. (In Russ.).
[18] Mitryaykin V.I., Bezzametnov O.N., Krotova E.V. The study of strength of composites under impact. Izvestiya vysshikh uchebnykh zavedeniy. Aviatsionnaya tekhnika, 2020, t. 63, no. 3, pp. 27–33. (In Russ.). (Eng. version: Russ. Aeronaut., 2020, vol. 63, no. 3, pp. 397–404, doi: https://doi.org/10.3103/S1068799820030046)
[19] Chulkov D.I., Terekhin A.V., Tipikin M.E. et al. Ultrasonic quality control of the aerial vehicle fiberglass structural elements impregnation with the organic resins. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2023, no. 3, pp. 46–54. EDN: IUJOZB (in Russ.).
[20] Kablov E.N., Laptev A.B., Prokopenko A.N. et al. Relaxation of polymer composite materials under the prolonged action of static load and climate (review). Part 1. Binders. Aviatsionnye materialy i tekhnologii [Aviation Materials and Technologies], 2021, no. 4, pp. 70–80, doi: https://doi.org/10.18577/2713-0193-2021-0-4-70-80 (in Russ.).