Verification of the developed computational model of the main combustion chamber of a gas turbine engine
Authors: Gras, Mayatskiy S.A. | Published: 20.10.2014 |
Published in issue: #10(655)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: computational model, combustion chamber, combustion process, three-dimensional thermal and gas-dynamic modeling, gas turbine engine |
Improving the efficiency of the main combustion chamber by means of control is of current interest. In this paper, the importance of control of the combustion process in the main combustion chamber of a gas turbine engine is proved. A method of analysis of working processes in main combustion chambers is adopted and validated. A computational model of the main combustion chamber of a gas turbine engine is developed using the ANSYS FLUENT software for solving three-dimensional thermal and fluid dynamics problems. The calculation results obtained by the numerical simulation are verified using test data available for serial production gas turbine engines. The results of verification show that the developed computational model allows modeling working processes in controlled combustion chambers of various designs with a high degree of accuracy.
References
[1] Gurevich O.S. Sistemy avtomaticheskogo upravleniia aviatsionnymi gazoturbinnymi dvigateliami [Automatic control systems of aviation gas turbine engines]. Moscow, Torus Press, 2010. 264 p.
[2] Gras’ko T.V., Maiatskii S.A. Sovershenstvovanie rabochego protsessa gazoturbinnogo dvigatelia letatel’nogo apparata za schet primeneniia vysokotemperaturnoi osnovnoi ka mery sgoraniia [Improving workflow gas turbine engine of the aircraft through the application of high temperature of main combustion chamber]. Sbornik trudov 100 let VVS: Vserossiiskaia nauchno-prakticheskaia konferentsiia, Voronezh, 16–17 maia 2012 [Proceedings 100 years of the air force: all-Russian scientific-practical conference, Voronezh, may 16–17, 2012]. Voronezh, VAIU publ., 2012, pp. 105–108.
[3] Grigor’ev A.V., Mitrofanov V.A., Rudakov O.A., Salivon N.D. Teoriia kamery sgoraniia [The theory of the combustion chamber]. Sankt-Peterburg, Nauka, 2010. 288 p.
[4] Kharitonov V.F. Proektirovanie kamer sgoraniia [Design of combustors]. Ufa, UGATU publ., 2008. 138 p.
[5] CoIIis S.S., Joslin R.D., Seifert A., Theofilis V. Issues in active flow control: theory, control, simulation, and experiment Text. Progress in Aerospace Science, 2004, vol. 40, рр. 279–283.
[6] Matveev S.G., Zubrilin I.A. Modelirovanie struktury potoka za stabilizatorom plameni metodom krupnykh vikhrei [Large–eddy simulation of flow structure in bluff–body flameholder]. Izvestiia Samarskogo nauchnogo tsentra Rossiiskoi akademii nauk [Proceedings of the Samara Scientific Center, Russian Academy of Sciences]. 2013, vol. 15, no. 6(4), pp. 874–880.
[7] Zhou X., Luo K.H., Williams J.J.R. Vortex dynamics in spatiotemporal development of reacting plumes. Combustion and Flame, 2002, no. 1–2, pp. 11–29.
[8] Riechelmann D., Kato S., Fujimori T. Effect of presumed PDF selection on the numerical result for turbulent diffusion flames. JSME International Journal, Series B: Fluids and Thermal Engineering, 2002, vol. 45, issue 1, pp. 108–111.
[9] Mandai S., Uda N., Nishida H. Premixed combustion models for gas turbine with stratified fueling systems. JSME International Journal, Series B: Fluids and Thermal Engineering, 2003, vol. 46, issue 1, pp. 145–153.
[10] Kulagin V.V. Teoriia, raschet i proektirovanie aviatsionnykh dvigatelei i energeticheskikh ustanovok: Osnovy teorii GTD. Rabochii protsess i termogazodinamicheskii analiz. Kn.1. Sovmestnaia rabota uzlov vypolnennogo dvigatelia i ego kharakteristiki [Theory, calculation and design of aircraft engines and power plants: Fundamentals of the theory of GTE. Workflow and thermogasdynamic analysis. Book 1. Joint work of performed engine components and its characteristics]. Moscow, Mashinostroenie publ., 2002. 616 p.