Modeling of a multicomponent gas flow through a cyclone of dust arrester GP-628 at a gas purifying area using ANSYS
Authors: Aliev T.T., Belyaev S.N., Galakhar A.S. | Published: 20.10.2014 |
Published in issue: #10(655)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: gas mixture, pressure distribution, three-dimensional velocity distribution, turbulent flow, numerical study |
The numerical analysis of a multicomponent gas flow through the cyclone is of great importance because full-scale experiments are extremely time-consuming and expensive. Furthermore, some phenomena cannot be observed directly when conducting the full-scale experiments. Three-dimensional flow of a multicomponent gas mixture through the cyclone of a GP-628 dust arrester at the gas purifying area is studied numerically under working conditions at average temperature, pressure, and gas flow rate values. Turbulent gas flow was calculated using zero-equation models. Three-dimensional distributions of pressure and flow velocities of the multicomponent gas mixture through the cyclone of the dust arrester GP-628 were obtained. The calculated value of flow resistance of the cyclone is in good agreement with the published data for the dust arrester.
References
[1] Mustafin F.M., Konovalov N.I., Gil’metdinov R.F., Kviatkovskii O.P., Gamburg I.Sh. Mashiny i oborudovanie gazonefteprovodov [Machines and equipment of oil and gas pipelines]. Ufa, USPTU publ., 2002. 384 p.
[2] Tarasova L.A. Povyshenie tekhnologicheskoi effektivnosti apparatov vikhrevogo tipa v sistemakh gazoochistki. Diss. dokt. tekhn. nauk [Increase technological efficiency of vortex-type apparatus in gas cleaning systems. Dr. tech. sci. diss.]. Moscow, 2010. 34 p.
[3] Bezik D.A. Avtomatizatsiia rascheta parametrov tsiklona na osnove matematicheskogo modelirovaniia protsessa pyleulavlivaniia. Diss. kand. tekhn. nauk [Automation of calculation parameters of the cyclone on the basis of mathematical modeling of dust separation process. Cand. tehn. sci. diss.]. Briansk, 2000. 150 p.
[4] Aslamova V.S. Protsess separatsii v vysokoproizvoditel’nykh priamotochnykh tsiklonakh I metody ikh rascheta. Diss. dokt. tekhn. nauk [The process of separation in high-performance straight-through cyclones and calculation methods. Dr. tech. sci. diss.]. Tomsk, 2009. 377 p.
[5] Kuznetsov S.I., Mikhailik V.D., Rusanov S.A. Modelirovanie raboty vysokoeffektivnogo tsiklonnorotatsionnogo pyleulovitelia [Modeling of operation of high-efficiency cyclonerotating dust collector]. Vestnik KHNTU [Bulletin of KNTU]. 2009, no. 3(36), pp. 81–85.
[6] Ding J., Gidaspow D. Bubbling fluidization model using kinetic theory of granular flow. AICHE Journal, 1990, vol. 36, pp. 523–538.
[7] GOST R 8.662-2009 Gaz prirodnyi. Termodinamicheskie svoistva gazovoi fazy. Metody raschetnogo opredeleniia dlia tselei transportirovaniia i raspredeleniia gaza na osnove fundamental’nogo uravneniia sostoianiia AGA8 [State Standard 8.662-2009 Gas natural. Thermodynamic properties of the gas phase. Methods of calculating for the purposes of transportation and distribution of gas on the basis of the fundamental equation of state AGA8]. Moscow, Standartinform publ., 2010. 66 p.
[8] GOST 30319.1–96 Gaz prirodnyi: metody rascheta fizicheskikh svoistv. Opredelenie fizicheskikh svoistv prirodnogo gaza, ego komponentov i produktov ego pererabotki [State Standard 30319.1–96 Natural gas. Methods of calculation of physical properties. Definition of physical properties of natural gas, its components and processing products]. Minsk, Mezhgosudarstvennyi sovet po standartizatsii, metrologii i sertifikatsii publ., 1996. 20 p.
[9] Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook of thermophysical properties of gases and liquids]. Moscow, Nauka publ., 1972. 543 p.