Accounting for compressed gas properties in the mathematical model of a spool valve
Authors: Chernus P.P., Sharovatov V.T. | Published: 19.11.2014 |
Published in issue: #12(657)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: compressed gas, electro-pneumatic valve, spool valve, gas dynamics, mathematical model |
Accounting for the influence of compressed gas properties on the control valve parameters along with reliable mathematical models of actuating motors based on load-carrying shell elements makes it possible to use a pneumatic drive in computer-controlled closed-loop systems. In this paper, a mathematical model of an electro-pneumatic valve is developed on the basis of the concepts of gas dynamics. The approach takes into account the influence of the geometry of the pneumatic valve on the gas flow through it. Particular attention is paid to the effect of the gas flow on the valve dynamics and its flow coefficient. Theoretical relationships for determining the parameters of the mathematical model of the pneumatic valve were obtained taking into account the compressed gas dynamics. To verify the theoretical results, ANSYS Fluent was used to simulate the gas flow. The results of the simulation are in good agreement with the theoretical study. It is shown that the compressed gas properties significantly influence the value of the flow coefficient.
References
[1] Pnevmomuskul [Pneumatic artificial muscle]. Available at:http://www.festo.com/cat/ru_ru/products_010606 (accessed 13 October 2014).
[2] Loshitskii P.A, Sharovatov V.T. Matematicheskaia model’ silovogo obolochkovogo besshtokovogo pnevmotsilindra dvustoronnego deistviia [Mathematical Model of the Power Pneumocylinder without a Rod of Bilateral Action Membrane Type]. Mekhatronika, avtomatizatsiia, upravlenie [Mechatronics, automation, control]. 2012, no. 4, pp. 24–30.
[3] Chernus P.P. O perspektivakh primeneniia ispolnitel’nykh dvigatelei na silovykh obolochkovykh elementakh [On the prospects of the use of executive power to the engines of shell elements]. Trudy 6 Obshcherossiiskaia molodezhnaia nauchno-tekhnicheskaia konferentsiia «Molodezh’. Tekhnika. Kosmos» [Works 6 All-Russian Youth Scientific Conference «Youth. Machinery. Cosmos»]. St. Petersburg, BSTU ‘’VOENMECH’’ named after D.F. Ustinov, 2014, pp. 247–248.
[4] Popov D.N. Mekhanika gidro- i pnevmoprivodov [Mechanics of hydraulic and pneumatic actuators]. Moscow, Bauman Press, 2002. 320 p.
[5] Aranovskii S.V., Freidovich L.B., Nikiforova L.V., Losenkov A.A. Modelirovanie i identifikatsiia dinamiki zolotnikovogo gidroraspredelitelia. Chast’ I. Modelirovanie [Modeling and identification of dynamics of a hydraulic actuator with a spool valve. Part I. Modeling]. Izvestiia vuzov. Priborostroenie [Proceedings of the higher educational institutions. Instrument]. 2013, no. 4, pp. 52–56.
[6] Sharovatov V.T., Loshitskii P.A. Manipuliator [Manipulator]. Patent RF no. 117107, MPK B25J9/00, 2012.
[7] Sharovatov V.T., Loshitskii P.A. Blok rulevogo privoda [Steering gear unit]. Patent RF no. 118940, MPK B64S13/00, B64S13/36. 2012.
[8] Gamynin N.S. Gidravlicheskii privod sistem upravleniia [Hydraulic drive control systems]. Moscow, Mashinostroenie publ., 1972. 376 p.
[9] Automation Technology Pneumatic and electrical components. Available at: http://www.festo.com/net/SupportPortal/Files/339258/KeyProducts_2014_EN_low.pdf (accessed 13 October 2014).
[10] Sternin L.E. Osnovy gazovoi dinamiki [Fundamentals of gas dynamics]. Moscow, Vuzovskaia kniga publ., 2012. 332 p.
[11] Frik P.G. Turbulentnost’: podkhody i modeli [Turbulence: approaches and models]. Moscow–Izhevsk, Reguliarnaia i khaoticheskaia dinamika publ., 2010. 332 p.
[12] Gerts E.V. Pnevmaticheskie ustroistva i sistemy. Spravochnik [Pneumatic devices and systems. Directory]. Moscow, Mashinostroenie publ., 1981. 410 p.