Analysis of the Influence of a Coulomb Friction Damper on the Dynamics of a Bevel Gear
Authors: Kozharinov E.V., Temis Y.M. | Published: 29.07.2015 |
Published in issue: #7(664)/2015 | |
Category: Calculation and Design of Machinery | |
Keywords: bevel gears, Coulomb friction damper, resonance vibrations, non-linear systems |
Resonance oscillations appearing in bevel gears can lead to their fracture. The article describes different types of Coulomb friction damper that are used to reduce the resonance oscillation amplitude in bevel gears. The choice of a simplified flat finite-element model of interaction between a dish-shaped damper and the gear is validated. Basic operation modes of the Coulomb friction damper are studied, namely with long and instant relative stops. Amplitude-frequency response graphs of the damper-gear system are plotted for various values of damper pre-pressure. The work of the disturbing and frictional forces is calculated. An influence of the pre-pressure value on the resonance frequency of the system is studied. The damper pre-pressure value that provides the minimal amplitude of resonance oscillations is determined. Using the resonance curve method, the oscillation decrement of the damper-gear system with optimal parameters is calculated and found to be 46.1%. The results of the calculations have led to a conclusion that the use of a Coulomb friction damper is an efficient way to reduce the amplitude of resonance oscillations in bevel gears.
References
[1] Lopatin B.A., Tsukanov O.N. Tsilindro-konicheskie zubchatye peredachi [Helical-bevel gears]. Cheliabinsk, South Ural State University publ., 2005. 200 p.
[2] Ivanov M.N. Detali mashin [Machine parts]. Moscow, Vysshaia shkola publ., 2010. 408 p.
[3] AGMA 911-A94. Design Guidelines for Aerospace Gearing. AGMA, 1994.
[4] ISO 10300-1. Calculation of load capacity of bevel gears. ISO, 2001. 56 p.
[5] Biderman V.L. Teoriia mekhanicheskikh kolebanii [Theory of mechanical vibrations]. Moscow, Vysshaia shkola publ., 1980. 408 p.
[6] Osnovy tribologii [Fundamentals of tribology]. Ed. Chichinadze A.V. Moscow, Mashinostroenie publ., 2001. 664 p.
[7] Kragel’skii I.V., Mikhin N.M. Uzly treniia mashin [Friction units of machines]. Moscow, Mashinostroenie publ., 1984. 280 p.
[8] Timoshenko S.P. Kolebaniia v inzhenernom dele [Fluctuations in engineering]. Moscow, Gosudarstvennoe izdatel’stvo fiziko-matematicheskoi literatury publ., 1959. 341 p.
[9] Gekker F.R. Dinamika mashin, rabotaiushchikh bez smazochnykh materialov v uzlakh treniia [Dynamics of machines operating without lubricants in friction]. Moscow, Mashinostroenie publ., 1983. 168 p.
[10] Birger I.A., Shorr B.F., Iosilevich G.B. Raschet na prochnost’ detalei mashin [Strength analysis of machine parts].Moscow, Mashinostroenie publ., 1993. 640 p.
[11] Shorr B.F., Stadnikov A.N., Serebriakov N.N. Raschetno-eksperimental’noe opredelenie koeffitsienta treniia pri otnositel’nom ostsilliruiushchem dvizhenii detalei [Design and experimental determination of the coefficient of friction at a relative oscillating motion parts]. Dvigatel’ [Engine]. 2011, no. 4, pp. 44–45.
[12] Matveev V.V. Dempfirovanie kolebanii deformiruemykh tel [Damping deformable bodies]. Kiev, Naukova dumka publ., 1985. 263 p.
[13] Yasutomo K., Hiroyuki Y., Hiroharu O. Analysis and verification test of damping characteristics of steam turbine hollow vane with friction damper. Proceedings of ASME Turbo Expo 2014, Dusseldorf, 2014.
[14] Bessone A., Traversone L. Simplified method to evaluate the «under platform» damper effects on turbine blade eigenfrequencies supported by experimental test. Proceedings of ASME Turbo Expo 2014, Dusseldorf, 2014.