Fatigue Strength Calculations for Non-Uniaxial Stress States
Authors: Semenov-Ezhov I.E., Shirshov A.A. | Published: 29.07.2015 |
Published in issue: #7(664)/2015 | |
Category: Calculation and Design of Machinery | |
Keywords: endurance, equivalent stress, cycle characteristic |
The increase of service life of parts and assemblies is a topical problem in mechanical engineering. Calculations for endurance determine the life of assemblies, machines, structures, and their elements. The authors propose a method of endurance calculations for non-uniaxial stress states in the concentrator zone using valid stresses obtained through calculation. Criteria are defined for the calculation of the equivalent stress that takes into account the sign of the principal stress cycle characteristics. The criteria are determined by transforming classical formulae. The proposed method of endurance calculation can be applied not only to multiaxial stress states but also to uniaxial ones.
References
[1] Kogaev V.P., Makhutov N.A., Gusenkov A.P. Raschety detalei mashin i konstruktsii na prochnost’ i dolgovechnost’ [Calculations of machine parts and structures for strength and durability]. Moscow, Mashinostroenie publ., 1985. 224 p.
[2] GOST 25.504–82. Raschety i ispytaniia na prochnost’. Metody rascheta kharakteristik soprotivleniia ustalosti [State Standard 25.504–82. Strength calculation and testing. Methods of fatigue strength behaviour calculation]. Moscow, Standartinform publ., 2005. 55 p.
[3] Wang Y.-Y., Yao W.-X. Evaluation and comparison of several multiaxial fatigue criteria. International Journal of Fatigue, 2004, vol. 26, iss. 1, pp. 17–25.
[4] Atzori B., Berto F., Lazzarin P., Quaresimin M. Multi-axial fatigue behaviour of a severely notched carbon steel. International Journal of Fatigue, 2006, vol. 28, iss. 5–6, pp. 485–493.
[5] Shang D.-G., Sun G.-Q., Deng J., Yan C.-L. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue, 2007, vol. 29, iss. 12, pp. 2200–2207.
[6] Vu Q.H., Halm D., Nadot Y. Multiaxial fatigue criterion for complex loading based on stress invariants. International Journal of Fatigue, 2010, vol. 32, iss. 7, pp. 1004–1014.
[7] Wu Z.-R., Hu X.-T., Song Y.-D. Multiaxial fatigue life prediction for titanium alloy TC4 under proportional and nonproportional loading. International Journal of Fatigue, 2014, vol. 59, рр. 170–175.
[8] Benedetti M., Fontanari V., Bandini M., Taylor D. Multiaxial fatigue resistance of shot peened high-strength aluminum alloys. International Journal of Fatigue, 2014, vol. 61, pp. 271–282.
[9] Louks R., Gerin B., Draper J., Askes H., Susmel L. On the multiaxial fatigue assessment of complex three-dimensional stress concentrators. International Journal of Fatigue, 2014, vol. 63, pp. 12–24.
[10] Kollinz Dzh. Povrezhdenie materialov v konstruktsiiakh. Analiz, predskazanie, predotvrashchenie [Damage to materials in the construction. Analysis, prediction, prevention]. Moscow, MIR publ., 1984. 624 p.