Thermo-Stressed State of the Shell of a Cylindrical Cryogenic Tank when it is Being Filled
Authors: Aleksandrov A.A., Zarubin V.S., Zimin V.N. | Published: 08.04.2016 |
Published in issue: #4(673)/2016 | |
Category: Calculation and Design of Machinery | |
Keywords: cryogenic tank, mathematical model, quasi-stationary distribution of temperature, stress state of the shell. |
The process of filling a tank with cryogenic liquid is considered in this paper. A complex mathematical model is built that describes the thermo-stressed state of the circular cylindrical shell of the tank when the temperature along the generatrix is distributed nonuniformly, which is caused by the fluctuation of the liquid level. In the general case, the shell is loaded by the internal pressure in the tank chamber, hydrostatic pressure of the liquid and axial compressive force. The quantitative analysis of the model simulating the displacement of the liquid level at a constant speed allowed the estimation of the time required to establish quasi-stationary temperature distribution along the shell generatrix, and the effect of the governing parameters on the non-uniform temperature distribution and radial displacement of the shell. It also allowed the evaluation of the distribution of the bending moment at the shell cross section and the maximum absolute value of the axial compressive stress. The calculations presented in this paper can be useful in calculating and designing shells of cryogenic tanks.
References
[1] Feodos’ev V.I. Osnovy tekhniki raketnogo poleta [Basic techniques of rocket flight]. Moscow, Nauka publ., 1979. 496 p.
[2] Kovalev B.K. Razvitie raketno-kosmicheskikh sistem vyvedeniia [Development of space-rocket launch systems]. Moscow, Bauman Press, 2014. 400 p.
[3] Al’ternativnye topliva dlia dvigatelei vnutrennego sgoraniia [Alternative fuels for internal combustion engines]. Ed. Aleksandrov A.A., Markov V.A. Moscow, Inzhener publ., Oniko M publ., 2012. 791 p.
[4] Balabukh L.I., Kolesnikov K.S., Zarubin V.S., Alfutov N.A., Usiukin V.I., Chizhov V.F. Osnovy stroitel’noi mekhaniki raket [Fundamentals of building mechanics missiles]. Moscow, Vysshaia shkola publ., 1969. 496 p.
[5] Zarubin V.S., Kuvyrkin G.N. Mathematical Modeling of Thermomechanical Processes under Intense Thermal Effect. High Temperature, 2003, vol. 41, no. 2, pp. 257–265.
[6] Zarubin V.S., Kuvyrkin G.N. Osobennosti matematicheskogo modelirovaniia tekhnicheskikh ustroistv [Special features of mathematical modeling of technical instruments]. Matematicheskoe modelirovanie i chislennye metody [Mathematical Modeling and Computational Methods]. 2014, vol. 1, no. 1–1, pp. 5–17.
[7] Zarubin V.S., Zimin V.N., Kuvyrkin G.N. Matematicheskoe modelirovanie temperaturnogo sostoianiia obolochki tsilindricheskoi kriogennoi emkosti pri zapolnenii i oporozhnenii [Mathematical modeling of the thermal state of the cylindrical shell of the cryogenic tank during filling and emptying]. Matematika i matematicheskoe modelirovanie [Mathematics and Mathematical Modeling]. 2015, no. 6, doi:10.7463/mathm.0615.0829350.
[8] Feodos’ev V.I. Desiat’ lektsii-besed po soprotivleniiu materialov [Ten lectures, discussions on strength of materials]. Moscow, Nauka publ., 1975. 173 p.
[9] Konstruktsionnye materialy: Spravochnik [Construction Materials: A Handbook]. Ed. Arzamasov B.N. Moscow, Mashinostroenie publ., 1990. 688 p.
[10] Galanin M.P., Savenkov E.B. Metody chislennogo analiza matematicheskikh modelei [Numerical analysis of mathematical models]. Moscow, Bauman Press, 2010. 591 p.
[11] Ponomarev S.D., Biderman V.L., Likharev K.K., Makushin V.M., Malinin N.N., Feodos’ev V.I. Raschety na prochnost’ v mashinostroenii [The strength calculations in mechanical engineering]. Moscow, Mashgiz publ., 1958. 974 p.
[12] Feodos’ev V.I. Soprotivlenie materialov [Mechanics of materials]. Moscow, Bauman Press, 1999. 592 p.