Analyzing Ways to Improve the Efficiency of the Leontiev Tube
Authors: Burtsev S.A. | Published: 10.08.2016 |
Published in issue: #8(677)/2016 | |
Category: Calculation and Design of Machinery | |
Keywords: energy separation, Prandtl number, temperature recovery factor, Leontiev tube, heat transfer intensification, natural gas, condensation |
The working principles of a gas-dynamic energy separation device known as the Leontiev tube are examined. Possible ways to improve the efficiency of the device are analyzed. It is shown that for gases with the values of the Prandtl number of around 0.7, it is possible to increase the amount of transferred heat by utilizing vortex heat transfer enhancement mechanisms and by using the influence of the condensed phase on the heat-transfer intensification. The existing methods for calculating this class of devices were refined to account for the condensed phase influence on the heat-transfer intensification. The refined methods take into account not only the heat of the phase change during condensation but also the effect of Mach shocks generated by the condensed phase flow on the temperature recovery factor on the wall of the supersonic flow channel. The calculation methods were verified against the experimental results obtained with natural gas. The results of numerical calculations show that in the presence of condensable components in the working gas supersonic flow, it is possible to increase the efficiency of the gas-dynamic energy separation device by 1.3–1.7 times without a significant rise of total pressure losses in the supersonic flow channel of the energy separation device.
References
[1] Leont’ev A.I. Sposob temperaturnoi stratifikatsii gaza i ustroistvo dlia ego osushchestvleniia (Truba Leont’eva) [The method of temperature stratification of gas and device for its implementation (Pipe Leontiev)]. Patent RF, no. 2106581, 1998. 5 p.
[2] Leont’ev A.I. Gas-dynamic method of energy separation of gas flows. High Temperature, 1997, vol. 35, is. 1, pp. 155–157.
[3] Leont’ev A.I. Temperature stratification of supersonic gas flow. Doklady Physics, 1997, vol. 42, is. 6, pp. 309–311.
[4] Burtsev S.A., Leontiev A.I. Study of the influence of dissipative effects on the temperature stratification in gas flows (Review). High Temperature, 2014, vol. 52, is. 2, pp. 297–307. doi: 10.1134/S0018151X13060060.
[5] Kutateladze S.S., Leont’ev A.I. Teplomassoobmen i trenie v turbulentnom pogranichnom sloe [Heat-mass-exchange and friction in a turbulent boundary layer]. Moscow, Energoatomizdat publ., 1985. 320 p.
[6] Burtsev S.A. Analiz vliianiia razlichnykh faktorov na znachenie koeffitsienta vosstanovleniia temperatury na poverkhnosti tel pri obtekanii potokom vozdukha. Obzor [Analysis of influence of different factors on the value of the temperature recovery factor at object surfaces in case of an airflow. Review]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2004, no. 11. Available at: http://technomag.bmstu.ru/doc/551021.html.
[7] Leontiev A.I., Lushchik V.G., Yakubenko A.E. The recovery factor in a supersonic flow of gas with a low Prandtl number. High Temperature, 2006, vol. 44, is. 2, pp. 234–242. doi: 10.1007/s10740-006-0029-8.
[8] Zditovets A.G., Titov A.A. Vliianie formy poverkhnosti teploizolirovannogo sterzhnia, omyvaemogo sverkhzvukovym potokom, na koeffitsient vosstanovleniia temperatury [The influence of heat insulated rod surface shape in the supersonic flow on the temperature recovery factor]. Izvestiia RAN. Energetika [Izvestiya RAN. Energetics]. 2007, no. 2, pp. 111–117.
[9] Burtsev S. A., Vasil’ev V. K., Vinogradov Iu. A., Kiselev N. A., Titov A. A. Eksperimental’noe issledovanie kharakteristik poverkhnostei, pokrytykh reguliarnym rel’efom [Experimental study of parameters of surfaces coated with regular relief]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2013, no. 1, pp. 263–290. Available at: http://technomag.bmstu.ru/doc/532996.html. doi: 10.7463/0113.0532996.
[10] Burtsev S.A. Issledovanie temperaturnoi stratifikatsii gaza [Investigation of the temperature stratification of gas]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering]. 1998, no. 2, pp. 65–72.
[11] Leont’ev A.I., Burtsev S.A., Vizel’ Ia.M., Chizhikov Iu.V. Eksperimental’noe issledovanie gazodinamicheskoi temperaturnoi stratifikatsii prirodnogo gaza [Experimental study of gas-dynamic temperature stratification of natural gas]. Gazovaia promyshlennost’ [GAS Industry of Russia]. 2002, is. 11, pp. 72–76.
[12] Zditovets A.G., Titov A.A. Eksperimental’noe issledovanie gazodinamicheskogo metoda bezmashinnogo energorazdeleniia vozdushnykh potokov [Experimental Study of a Gas-Dynamic Method for an Air Stream Energy Separation]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2013, no. 9, pp. 391–397.
[13] Vinogradov Iu.A., Ermolaev I.K. , Zditovets A.G., Leont’ev A.I. Izmerenie ravnovesnoi temperatury stenki sverkhzvukovogo sopla pri techenii smesi gazov s nizkim znacheniem chisla Prandtlia [Measurment of an equilibrium temperature of a supersonic nozzle wall at current of a gases mixture with low Prandtl number]. Izvestiia RAN. Energetika [Izvestiya RAN. Energetics]. 2005, no. 4, pp. 128–133.
[14] Volchkov E.P., Makarov M.S. Gazodinamicheskaia temperaturnaia stratifikatsiia v sverkhzvukovom potoke [Gas dynamic temperature stratification in a supersonic flow]. Izvestiia RAN. Energetika [Izvestiya RAN. Energetics]. 2006, no. 2, pp. 19–31.
[15] Koval’nogov N.N., Fedorov R.V. Numerical analysis of the coefficients of temperature restitution and heat transfer in high-speed flows. Russian Aeronautics, 2007, vol. 50, no. 3, pp. 309–316.
[16] Makarov M.S., Makarova S.N. Efficiency of energy separation at compressible gas flow in a planar duct. Thermophysics and Aeromechanics, 2013, vol. 20, no. 6, pp. 757–767.
[17] Burtsev S.A. Exploring ways to improve efficiency of gasdynamic energy separation. High Temperature, 2014, vol. 52, is. 1, pp. 12–18. doi: 10.1134/S0018151X14010064.
[18] Burtsev S.A., Leont’ev A.I. Temperaturnaia stratifikatsiia v sverkhzvukovom potoke gaza [Temperature stratification in supersonic gas flow]. Izvestiia RAN. Energetika [Izvestiya RAN. Energetics]. 2000, no. 5, pp. 101-113.
[19] Leontiev A.I., Lushchik V.G., Yakubenko A.E. A heat-insulated permeable wall with suction in a compressible gas flow. International Journal of Heat and Mass Transfer, 2009, vol. 52, is. 17–18, pp. 4001–4007.
[20] Leont’yev A.I., Lushchik V.G., Yakubenko A.E. Distinctive Features of Heat Transfer in the Region of a Gas Curtain Formed on Injection of Extraneous Gas. Fluid Dynamics, 2010, vol. 45, no. 4, pp. 559–565.
[21] Makarova M.S. Optimizatsiia temperatury pronitsaemoi stenki pri vduve inorodnogo gaza [Optimisation of Permeable Wall Temperature under Injection of Foreign Gas]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2012, no. 7, pp. 291–297.
[22] Vinogradov Y.A., Zditovets A.G., Strongin M.M. Experimental investigation of the temperature stratification of an air flow through a supersonic channel with a central body in the form of a porous permeable tube. Fluid Dynamics, 2013, vol. 48, no. 5, pp. 687–696.
[23] Zditovets A.G., Vinogradov Iu.A., Strongin M.M., Titov A.A., Medvetskaia N.V. Eksperimental’noe issledovanie osobennostei teploobmena pri vduve geliia cherez pronitsaemuiu poverkhnost’ v sverkhzvukovoi potok argona [Experimental Study of Heat Transfer Features at Helium Injection through a Permeable Surface in Supersonic Argon Flow]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2012, no. 6, pp. 253–260.
[24] Burtsev S.A. Issledovanie temperaturnogo razdeleniia v potokakh szhimaemogo gaza. Diss. kand. tekhn. nauk [Investigation of temperature separation in the flows of compressible gas. Cand. tehn. sci. diss.] Moscow, Bauman Press, 2001. 124 p.
[25] Burtsev S.A., Kiselev N.A. Leont’ev A.I. Peculiarities of Studying Thermohydraulic Characteristics of Relief Surfaces. High Temperature, 2014, vol. 52, is. 6, pp. 869–872. doi: 10.1134/S0018151X14060054.
[26] Kiselev N.A., Burtsev S.A., Strongin M.M. A Procedure for Determining the Heat Transfer Coefficients of Surfaces with Regular Relief. Measurement Techniques, 2015, vol. 58, is. 9, pp. 1016-1022. doi: 10.1007/s11018-015-0835-7.
[27] Koval’nogov N.N., Magazinnik L.M. Numerical analysis of the coefficients of temperature restitution and heat transfer in a turbulent dispersed flow. Russian Aeronautics, 2008, vol. 51, no. 2, pp. 152–159.
[28] Varaksin A.Yu., Protasov M.V., Ivanov T.F., Polyakov A.F. An experimental investigation of the behavior of solid particles during their motion in smooth and dimpled pipes. High Temperature, 2007, vol. 45, is. 2, pp. 221–226. doi: 10.1134/S0018151X07020125.
[29] Tsynaeva A.A., Tsynaeva E.A., Koval’nogov N.N. O vozmozhnostiakh povysheniia effektivnosti raboty sverkhzvukovoi truby temperaturnoi stratifikatsii pri ispol’zovanii teplovykh trub [On the Possibilities of Improving the Efficiency of a Temperature Stratification Supersonic Pipe Using Heat Pipes]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2011, no. 8, pp. 380–384.
[30] Tsynaeva A.A., Tsynaeva E.A., Shkolin E.V. Methods of heat transfer intensification in the thermal stratification pipe. Russian Aeronautics, 2013, vol. 56, no. 4, pp. 379–383.
[31] Tsynaeva A.A., Tsynaeva E.A., Nikitin M.N. Intensifikatsiia teploobmena v energeticheskikh ustroistvakh na osnove gazodinamicheskoi temperaturnoi stratifikatsii s pomoshch’iu teplovykh trub [Intensification of heat exchange in power devices based on gas-dynamic temperature stratification using heat pipes]. Promyshlennaia energetika [Industrial power]. 2014, no. 12, pp. 36–39.
[32] Leontiev A.I., Burtsev S.A. Device for Separation of Vortex Gas-Dynamic Energy. Doklady Physics, 2015, vol. 60, no. 10, pp. 476–478. doi: 10.1134/S1028335815100092.
[33] Vargaftik N.B. Spravochnik po teplofizicheskim svoistvam gazov i zhidkostei [Handbook of thermophysical properties of gases and liquids]. Moscow, Nauka publ., 1972. 720 p.
[34] Popovich S.S., Vinogradov Iu.A., Strongin M.M. Eksperimental’noe issledovanie vozmozhnosti intensifikatsii teploobmena v ustroistve bezmashinnogo energorazdeleniia potokov [Experimental research of the possibility of heat transfer enhancement in gas dynamic energy separation process]. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta imeni akademika S.P. Koroleva [Vestnik of the Samara State Aerospace University]. 2015, vol. 14, no. 2, pp. 159–169.
[35] Varaksin A.Yu., Romash M.E., Kopeitsev V.N., Gorbachev M.A. Method of impact on free nonstationary air vortices. High Temperature, 2012, vol. 50, is. 4, pp. 496–500. doi: 10.1134/S0018151X12040219.
[36] Varaksin A.Y. Clusterization of particles in turbulent and vortex two-phase flows. High Temperature, 2014, vol. 52, is. 5, pp. 752–769. doi: 10.1134/S0018151X14050204.
[37] Terekhov V.I., Pakhomov M.A., Chichindaev V.V. Effect of Evaporation of Liquid Droplets on the Distribution of Parameters in a Two-Species Laminar Flow. Journal of Applied Mechanics and Technical Physics, 2000, vol. 41, is. 6, pp. 1020–1028.
[38] Burtsev S.A., Vizel’ Ia.M., Leont’ev A.I., Chizhikov Iu.V. Sposob reguliruemogo bespodogrevnogo redutsirovaniia magistral’nogo prirodnogo gaza i ustroistvo dlia ego osushchestvleniia [A method of reducing the regulated bespodogrevnogo main natural gas and device for its realization]. Patent RF, no. 2162190, 2001. 6 p.
[39] Nauchnye osnovy tekhnologii 21 veka [Scientific bases of technology of the 21 century]. Ed. Leont’ev A.I., Piliugin N.N., Polezhaev Iu.V., Poliaev V.M. Moscow, UNPTs «Energomash» publ., 2000. 135 p.