The Influence of Wire Mesh Block Configuration and Reduction Rate on the Interlaminar Strength of Porous Net Materials during the Consolidation Process
Authors: Tretyakov A.F. | Published: 24.11.2016 |
Published in issue: #11(680)/2016 | |
Category: Calculation and Design of Machinery | |
Keywords: porous wire mesh (porous net material), anisotropy, interlaminar strength, reduction rate, deformation rate, welding |
Porous net materials manufactured by pressure welding of metal wire meshes are used to make permeable products with required properties. A structured approach is used to analyze the interlaminar strength, which involves determining the strength using the mesh geometric parameters (typical sizes), number of meshes, their mutual bracing, plastic deformation mechanism as well as the quality of structural element consolidation. Functional dependencies are obtained, which can be used to determine the design and technological parameters that provide maximum interlaminar strength of porous net materials with specified values of relative wire block reduction. It is shown that the poor quality of welded mesh joints formed by roll welding can be explained by the high resistance of micro-rough surfaces to deformation, and the low rate of mass transfer in the contact area. An improved interlaminar strength of porous net materials at low rates of deformation can be achieved through contact creep flow and an increased rate of diffusion mass transfer. At intensive dynamic loading, the interlaminar strength can be increased by local heating of contact surfaces, a decrease in the resistance to deformation of micro-rough surfaces, and an increase in the rate of mass transfer. The parameters that provide maximum interlaminar strength of porous net materials are determined.
References
[1] Pelevin F.V. Tekhnologiia izgotovleniia poristykh materialov [Manufacturing technology of porous materials]. Vestnik assotsiatsii VUZov turizma i servisa [Universities for Tourism and Service Association Bulletin]. 2007, no. 3, pp. 46–51.
[2] Poristye pronitsaemye materialy: Spravochnik [Porous permeable materials: Handbook]. Ed. Belov S.V. Moscow, Metallurgiia publ., 1987. 338 p.
[3] Sparks T., Chase G. Filters and Filtration. Handbook. Elsevier, 2013. 444 p.
[4] Pelevin F.V., Avramov N.I., Orlin S.A., Sintsov A.L. Effektivnost’ teploobmena v poristykh elementakh konstruktsii zhidkostnykh raketnykh dvigatelei [Heat exchange efficiency in porous structural elements of liquid-propellant rocket engines]. Inzhenernyi zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation]. 2013, is. 4. Available at: http: Enjournal.ru/catalogy/ machin/roset/689.html (accessed 20 March 2016).
[5] Xu G., Liu Y., Luo X., Ma J., Li H. Experimental investigation of transpiration cooling for sintered woven wire mesh structures. International Journal of Heat and Mass Transfer, 2015, vol. 91, pp. 898–907.
[6] Zeigarnik Iu.A., Poliakov A.F., Strat’ev V.K., Tret’iakov A.F., Shekhter Iu.L. Ispytaniia poristogo setchatogo materiala v kachestve obolochki lopatok vysokotemperaturnykh gazovykh turbin. Moscow, Preprint, OIVT RAN, 2010, no. 2-502, 64 p.
[7] Bunker R.S. Gas turbine cooling. Moving from macro to micro cooling. Proceedings of the ASME Turbo Expo, 2013, 3 p.
[8] Novikov Iu.M., Bol’shakov V.A. Inzhenernaia shkola MGTU im. N.E. Baumana: kombinirovannye poristye setchatye materialy. Effektivnye, bezopasnye i ekologichnye izdeliia na ikh osnove [School of engineering Bauman Moscow State Technical University: combined porous mesh materials. Efficient, safe and environmentally friendly products on their basis]. Bezopasnost’ zhiznedeiatel’nosti [Life safety]. 2015, no. 11, pp. 53–56.
[9] Tret’iakov A.F. Tekhnologicheskaia nasledstvennost’ v protsesse izgotovleniia izdelii iz poristykh setchatykh materialov s zadannymi svoistvami. Soobshchenie 1. Vliianie konstruktsii briketa setok i otnositel’nogo obzhatiia strukturoobrazuiushchikh elementov na poristost’ listovykh zagotovok [Technological heredity in the process of manufacture of porous mesh materials with desired properties. Message 1. The effect of the structure of the briquette grids and the relative compression-forming elements on the porosity of sheet materials]. Proizvodstva prokata [Rolled Products Manufacturing]. 2013, no. 5, pp. 32–42.
[10] Kocheshkov I.V. Analiz obrazovaniia fizicheskogo kontakta mezhdu komponentami kompozita pri uplotnenii zagotovki, sostoiashchei iz sloev aliuminievoi fol’gi i volokon bora [Analysis of the formation of physical contact between the components of the composite during compaction workpiece consisting of layers of aluminum foil and fibers of boron]. Proizvodstvo prokata [Rolled Products Manufacturing]. 2013, no. 12, pp. 15–19.
[11] Tret’iakov A.F Konsolidatsiia strukturoobrazuiushchikh elementov v protsesse goriachei prokatki metallicheskikh setok [Consolidation of structure-forming elements in the course of hot deformation of metal gauze]. Problemy chernoi metallurgii i materialovedeniia [Problems of ferrous metallurgy and materials science]. 2016, no. 1, pp. 5–10.
[12] Tret’iakov A.F. Tekhnologicheskaia nasledstvennost’ v protsesse izgotovleniia izdelii iz poristykh setchatykh materialov s zadannymi svoistvami. Soobshchenie 2. Zakonomernosti vliianiia plasticheskoi deformatsii i konsolidatsii provolok setok na tekhnologicheskie i teplofizicheskie svoistva poristykh setchatykh materialov [Technological heredity in the process of manufacture of porous mesh materials with desired properties. Message 2. Regularities of the influence of plastic deformation and the consolidation of the wires of the grids on the technological and thermophysical properties of porous mesh materials]. Proizvodstvo prokata [Rolled Products Manufacturing]. 2013, no. 6, pp. 29–34.
[13] Tret’iakov A.F., Sabel’nikova T.M., Kharitonova L.K. Ochistka poverkhnosti metallov v protsesse izgotovleniia i vosstanovleniia detalei mashin [Surface cleaning of metals in the process of manufacture and recovery of machine parts]. Tekhnologiia metallov [Technologiya Metallov]. 2001, no. 5, pp. 35–38.