The Optimization of the Machine Layout Based on Pressure Line Calculations on the Guides Surface
Authors: Shoucheng Ji, Utenkov V.M., Molchanov A.A. | Published: 07.09.2017 |
Published in issue: #9(690)/2017 | |
Category: Calculation and Design of Machinery | |
Keywords: machining accuracy, active working cutting zone, optimization, genetic algorithm |
The accuracy of processing in the working zone of machine tools is uneven. Machining conditions deteriorate rapidly when an opening in the joint guideways occurs (the pressure line is not distributed along the whole length of the guide surfaces). The calculations and optimization of the active cutting zone where the pressure line is distributed along the whole surface of the guideways are performed. The layout of the machine tool should provide the largest area of the active working cutting zone. The optimization task is non-linear and extreme. Based on the parameters of the lathe design, a system of equations is created to calculate the pressure line in the guideways. To find the extreme point of the objective function, the following parameters of the machine tool layout are changed: the position of the cutting force vector (cutter tip coordinates in the guideways’ system of coordinates), gravitational force and the position of the centre of gravity of the support, coordinates of the point of application of the force bound to the feed drive, distance between the guides and length of the support. The genetic algorithm method is used to shorten the time of calculating the extreme point of the objective function. The application of this method increases 10 times the speed of determining the machine tool layout parameters that would provide the largest area of the active working cutting zone.
References
[1] Vragov Iu.D. Analiz komponovok metallorezhushchikh stankov [The analysis of configurations of machine tools]. Moscow, Mashinostroenie publ., 1978. 208 p.
[2] Metallorezhushchie stanki i avtomaty [Machine tools and cutting machines]. Ed. Pronikov A.S. Moscow, Mashinostroenie publ., 1981. 479 p.
[3] Levina Z.M., Reshetov D.N. Kontaktnaia zhestkost’ mashin [Contact rigidity of machines]. Moscow, Mashinostroenie publ., 1971. 264 p.
[4] Ershov A.A. Vliianie kontaktnykh kharakteristik soedinenii korpusnykh detalei na pokazateli staticheskoi tochnosti stankov. Diss. kand. tekhn. nauk [The influence of the contact characteristics of joints of body parts on the performance static accuracy of machine tools. Cand. tech. sci. diss.]. Nizhniy Novgorod, 2001. 131 p.
[5] Tszi Sh., Chernianskii P.M. Metodika povysheniia tochnosti sistemy pozitsionirovaniia metallorezhushchikh stankov [Technique for Increasing Accuracy of Positioning System of Machine Tools]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2014, no. 12, pp. 12–21. Available at: http://technomag.bmstu.ru/doc/750300.html (accessed 15 March 2017), doi: 10.7463/1214.0750300.
[6] Tszi Sh., Chernianskii P.M. Metodika optimizatsii koordinat zony rezaniia v tokarnykh stankakh [The Optimizing Method of the Coordinates in the Lathe Cutting Zone]. Nauka i obrazovanie. MGTU im. N.E. Baumana [Science and Education. Bauman MSTU]. 2015, no. 10, pp. 36–46. Available at: http://technomag.bmstu.ru/doc/823142.html (accessed 15 March 2017), doi: 10.7463/1015.0823142.
[7] Gladkov L.A., Kureichik V.V., Kureichik V.M. Geneticheskie algoritmy [Genetic algorithms]. Moscow, FIZMATLIT publ., 2006. 320 p.
[8] Luk’ianov N.D. Parametricheskaia optimizatsiia avtomaticheskikh sistem stabilizatsii s pomoshch’iu geneticheskogo algoritma. Diss. kand. tekhn. nauk [Parametric optimization of automatic system stabilization using genetic algorithm. Cand. tech. sci. diss.]. Irkutsk, 2014. 138 p.
[9] Proektirovanie avtomatizirovannykh stankov i kompleksov [Design of automated machines and complexes]. Ed. Chernianskii P.M. In 2 vol. Vol. 1. Moscow, Bauman Press, 2012. 331 p.
[10] Gurtiakov A.M. Raschet i proektirovanie metallorezhushchikh stankov [Calculation and design of machine tools]. Tomsk, TPU publ., 2011. 136 p.
[11] Tarasenko A.A. Issledovanie geneticheskikh algoritmov optimizatsii: vypusknaia kvalifikatsionnaia rabota [The study of genetic optimization algorithms: final qualification work]. Tomsk, TPU publ., 2010. 44 p.
[12] Iglin S.P. Matematicheskie raschety na baze MATLAB [Mathematical calculations based on MATLAB]. Sankt-Petersburg, BKhV-Peterburg publ., 2005. 640 p.
[13] Guo Hai Ding, Lu Zhi Feng. Structure design optimization based on BP-Neural networks and genetic algorithms. Journal of Aerospace Power (China), 2003, vol. 18, no. 2, pp. 197–210.
[14] Litvinenko V.I. Metod induktivnogo sinteza RBF neironnykh setei s pomoshch’iu algoritma klonal’nogo otbora [The inductive method of synthesis of RBF neural networks with clonal selection algorithm]. Іnduktivne modeliuvannia skladnikh system [Inductive modeling of complex systems]. 2012, is. 4, pp. 114–127.
[15] Kutsyi N.N., Luk’ianov N.D. Sintez sistemy upravleniia mnogosviaznym ob"ektom s pomoshch’iu geneticheskogo algoritma na primere priamotochnogo kotla [Control system synthesis by a multivariable object using the genetic algorithm (on the example of the once-through boiler)]. Nauchnyi vestnik NGTU [Scientific Bulletin of NSTU]. 2014, vol. 55, no. 2, pp. 36–42.
[16] Hall M. A cumulative Multi-Niching genetic algorithm for multimodal function optimization. International journal of advanced research in artificial intelligence, 2012, vol. 1, no. 9, pp. 6–13.