Geometry of Cylindrical Self-locking Gears with Circular-arc Tooth Profiles
Authors: Timofeev G.A., Panyukhin V.V., Samoilova M.V. | Published: 19.09.2013 |
Published in issue: #5(638)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: cylindrical self-locking gears, gearing geometry, circular and involute tooth profiles |
The article presents the research results of helical self-locking gear synthesis in order to achieve a self-locking effect. Standard gear cutting equipment not always allows getting the necessary helix angle of a tooth for reaching a self-locking effect. Therefore there have been tasked to find the substitute profiles closely approximately those of involutes that do not require any special equipment for its processing. Processed by an abrasive wheel on a gear grinding machine or on a turning lathe by a cutting tool with circular cutting edges, curvature radius of which is equal to the radius of curvature of involutes in axial section, profiles answer to the task. Moreover the profiles in the axial section are outlined by circular arcs, and point of contact in a meshing is realized theoretically accurate. The practical difference between the circular and involute tooth profiles can be reduced to an amount not exceeding the processing tolerance.
References
[1] Turpaev A.I. Vintovye mekhanizmy i peredachi [Screw mechanisms and transmission]. Moscow, Mashinostroenie publ., 1982. 223 p.
[2] Veits V.L. Dinamika mashinnykh agregatov [Dynamics of machine units]. Leningrad, Mashinostroenie publ., 1969. 370 p.
[3] Veits V.L., Shneerson E.Z. Dinamicheskie kharakteristiki mashinnogo agregata s samotormoziashchimsia mekhanizmom. V kn.: Zubchatye i cherviachnye peredachi [The dynamic characteristics of the machine aggregate with self-locking mechanism. Toothed and worm gears]. Leningrad, Mashinostroenie publ., 1974, pp. 285–302.
[4] Turpaev A.I. Samotormoziashchie mekhanizmy [Self-locking mechanism]. Moscow, Mashinostroenie publ., 1976. 208 p.
[5] Dobrovol’skii V.V. K teorii KPD [The theory of efficiency]. Vestnik inzhenerov i tekhnikov [Bulletin of engineers and technicians]. 1935 no. 7, pp. 403–407.
[6] Popper I.B., Pessen D.W. The Twin worm Drive – A Self-Locking Worm-Gear Transmission of High Efficiency. Transactions of the ASME. Ser. U. 1960, vol. 82 no. 3, pp. 191–199.
[7] Miunster N.S., Tsarev G.V. Samotormoziashchiesia i zaklinivaiushchiesia tsilindricheskie zubchatye peredachi [Self-locking and wedged helical gear]. Trudy Tashkentskogo politekhnicheskogo instituta [Proceedings of the Tashkent Polytechnic Institute]. 1968, issue 30, pp. 3–6.
[8] Howell J. D. Helical Gearing. Patent USA, no. 3,481,215, MKI F 16 H 55/04, NKI 74/424.5, ser. no. 715,753, 1969. 4 p.
[9] A. Roano. Helical Gearing. Patent USA no. 2,583,384, MKI F 16 H 55/04, NKI 74—466, ser. no. 103,702, 1951. 12 p.
[10] Paniukhin V.I. Tsilindricheskaia zubchataia peredacha [Spur gear]. Avtorskoe svidetel’stvo SSSR [Author’s certificate USSR], no. 804953, MKI F 16 H 1/18, 414519/25—28, 1981, no. 6. 176 p.
[11] Ginzburg E.G., Golovanov N.F., Firun N.B., Khalebskii N.T. Zubchatye peredachi: Spravochnik [Gears: A Guide]. Leningrad, Mashinostroenie publ., 1980. 416 p.
[12] Reshetov D.N. Detali mashin [Machine parts]. Moscow, Mashinostroenie publ., 1975. 656 p.
[13] Korn G.A., Korn T.M. Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, General Publishing Company, 2000. 1151 p. (Russ. ed.: Korn G., Korn T. Spravochnik po matematike dlia nauchnykh rabotnikov i inzhenerov. Opredeleniia, teoremy, formuly. Moscow, Nauka publ., 1984. 831 p.).
[14] Gavrilenko V.A. Osnovy teorii evol’ventnoi zubchatoi peredachi [Fundamentals of the theory of involute gear]. Moscow, Mashinostroenie publ., 1969. 432 p.
[15] Timofeev G.A. , Paniukhin V.V. Anal izkriteriev samotormozheniia [Analysis of the criteria of self-braking]. Vestnik mashinostroeniia [Russian Engineering Research]. 2002, no. 9, pp. 3–8.