Determining the safety factor for fatigue strength under regular loading
Authors: Shirshov A.A. | Published: 19.09.2013 |
Published in issue: #8(641)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: endurance, uniaxial and multiaxial stress state |
A method for calculating endurance in terms of stresses in concentration areas is presented. The method is based on the transformation of classical formulas. It is shown that the endurance in the case of a non-uniaxial stress state is not practical to determine in terms of cycle stresses reduced to an equivalent stress that can be used to calculate the amplitude and average equivalent stresses. It is suggested that the amplitude and average stresses should be determined first in order to calculate the values of equivalent amplitude and average stresses afterwards. The efficiency of the method is proved by an example. The method can be used for calculating the endurance both in the case of uniaxial and multiaxial stress states.
References
[1] Kagaev V.P., Makhutov N.A., Gusenkov A.P. Raschety detalei mashin i konstruktsii na prochnost’ i dolgovechnost’ [Calculations of machine parts and structures for strength and durability].Directory.Moscow,Mashinostroenie publ., 1985. 224 p.
[2] Vorob’ev A.Z., Ol’kin B.I., Stebenev V.N. Soprotivlenie ustalosti elementov konstruktsii [Fatigue resistance of structural elements]. Moscow, Mashinostroenie publ., 1990. 239 p.
[3] Atzori B., Berto F., Lazzarin P., Quaresimin M. Multiaxial fatigue behaviour of a severely notched carbon steel. International Journal of Fatigue, 2006, vol. 28, pp. 485—493.
[4] De-Guang Shang, Guo-Qin Sun, Jing Deng, Chu-Liang Yan. Multiaxial fatigue damage parameter and life prediction for medium-carbon steel based on the critical plane approach. International Journal of Fatigue, 2007, vol. 29, pp. 2200—2207.
[5] Brighenti Roberto, Carpinteri Andrea. A notch multiaxial-fatigue approach based on damage mechanics. International Journal of Fatigue, 2012, vol. 39, pp. 122—133.
[6] Vu Q.H., Halm D., Nadot Y. Multiaxial fatigue criterion for complex loading based on stress invariants. International Journal of Fatigue, 2010, vol. 32, issue 7, pp. 1004—1014.
[7] Zenner H., Heidenreich R. Fatigue behaviour under multiaxial stress. Review of vestgations on Aeronautical Fatigue in the Federal Republic of Germany. 1979, pp. 52—54.
[8] 8. Kollinz Dzh. Povrezhdenie materialov v konstruktsiiakh. Analiz, predskazanie, predotvrashchenie [Damage to materials in the construction. The analysis, prediction, prevention]. Moscow, Mir publ., 1984. 624 p.
[9] 9. Cherniatin A.S., Shirshov A.A. Povyshenie dolgovechnosti elementov konstruktsii posredstvom glubokogo plasticheskogo deformirovaniia [Improvement of Structural Elements Durability by Deep Plastic Deformation]. Izvestiya Vysshikh Uchebnykh Zavedenii. Mashinostroenie [Proceedings of Higher Educational Institutions. Маchine Building]. 2013, no. 2, pp. 36—41.