Modeling the dynamics of vortex structures by the vortex element method
Authors: Marchevskiy I.K., Shcheglov G.A. | Published: 20.09.2013 |
Published in issue: #9(642)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: vortex element method, incompressible medium, vortex ring, parallel computing, multipole expansion |
The vortex meshless Lagrangian methods of computational fluid dynamics are efficient when solving joint aerohydroelasticity problems in the case of an incompressible flow around bodies in a medium. The actual problem is a quadratic increase of the run time following the increase in the number of vortex elements in the design scheme. In this study, an algorithm for the velocity field calculation is developed on the basis of the multipole expansion method and parallel computing algorithms. The algorithm was evaluated and tested by solving the problem of evolution of vortex rings. The study showed that the combination of both approaches makes it possible to increase the simulation speed by hundreds of times with a 16-core compute cluster. The developed algorithm will allow us to solve topical engineering problems on a real time basis.
References
[1] Cottet G.-H., Koumoutsakos P. Vortex Methods: Theory and Practice. Second ed. New York, Cambridge University Press, 2000. 313 p.
[2] Lewis R.I. Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems. Cambridge University Press, 2005. 592 p.
[3] Andronov P.R., Guverniuk S.V., Dynnikova G.Ia. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex methods for unsteady hydrodynamic loads]. Moscow, Lomonosov Moscow State University publ., 2006. 184 p.
[4] Marchevskii I.K., Shcheglov G.A. Primenenie parallel’nykh algoritmov pri reshenii zadach gidrodinamiki metodom vikhrevykh elementov [Application of parallel algorithms for solving hydrodynamic problems by the vortex element method]. Vychislitel’nye metody i programmirovanie [Numerical Methods and Programming]. 2010, vol. 11, pp. 105—110.
[5] Marchevskii I.K., Shcheglov G.A. Model’ simmetrichnogo vor tona-ot rezka dl ia chi s lennogo model i rovani ia prostranstvennykh techenii ideal’noi neszhimaemoi sredy [Wharton-symmetric model of the segment for the numerical simulation of three-dimensional flows of ideal incompressible media]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald named after N.E. Bauman. Ser. Natural sciences]. 2008, no. 4, pp. 62—71.
[6] Novikov E.A. Obobshchennaia dinamika trekhmernykh vikhrevykh osobennostei (vortonov) [Generalized dynamics of three-dimensional vortex features (Wharton)] . Zhurnal eksperimental’noi i teoreticheskoi fiziki [Journal of Experimental and Theoretical Physics]. 1983, vol. 84, issue 3, pp. 975—981.
[7] Alkemade A.J.Q. On vortex atoms and vortons. PhD Thesis, TU-Delft, April 1994. 209 p.
[8] Marchevsky I.K., Shcheglov G.A. 3D vortex structures dynamics simulation using vortex fragmentons. 6-th European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), September 10—14, 2012, Vienna, Austria, Proceedings. Vienna University of Technology. 20 p.
[9] Bogomolov D.V., Marchevskii I.K., Setukha A.V., Shcheglov G.A. Chislennoe modelirovanie dvizheniia pary vikhrevykh kolets v ideal’noi zhidkosti metodami diskretnykh vikhrevykh elementov [Numerical modelling of movement of pair vortical rings in the ideal liquid methods of discrete vertical elements]. Inzhenernaia fizika [Engineering Physics]. 2008, no. 4, pp. 8—14.
[10] Barnes J., Hut P. A hierarchical force-calculation algorithm. Nature. 1986, vol. 324, pp. 446—449.
[11] Dynnikova G.Ia. Ispol’zovanie bystrogo metoda resheniia «zadachi N tel» pri vikhrevom modelirovanii techenii [Fast technique for solving the n-body problem in flow simulation by vor tex methods ] . Zhurnal vychi s l i tel ’noi matemat iki i matemat icheskoi f iziki [Computational Mathematics and Mathematical Physics]. 2009, vol. 49, no. 8, pp. 1458—1465. Doi: 10.1134/S0965542509080090.
[12] Lukin V.V., Marchevskii I.K. Uchebno-eksperimental’nyi vychislitel’nyi klaster. Ch. 1. Instrumentarii i vozmozhnosti [Computing Cluster for Training and Experiments. Part 1. Tools and Possibilities]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald named after N.E. Bauman. Ser. Natural sciences]. 2011, no. 4, pp. 28—44.