Analysis of design parameters of solar power propulsion systems for nano-satellite
Authors: Zhumaev Z.S., Shcheglov G.A. | Published: 04.11.2013 |
Published in issue: #12(633)/2012 | |
Category: Calculation and Design of Machinery | |
Keywords: nanosatellite, solar thermal collector, thermal rocket, flight between coplanar orbits |
The paper describes a maneuvering nanosatellite, equipped with a solar power propulsion system with a parabolic trough collector. The influence of main parameters of the orientation and stabilization system on the movement trajectory of the nanosatellite has been analized. Based on the model problems solution it has been shown that the nanosatellite equipped with such propulsion system has a larger stock of the characteristic velocity.
References
[1] University Nanosat Program [site]. Available at: http://prs.afrl.kirtland.af.mil/UNP/index.html (accessed 7 October 2012).
[2] Malye kosmicheskie apparaty informatsionnogo obespecheniia [Small spacecraft information support] Moscow, Radiotechnics Publ., 2010. 320 p.
[3] Micropropulsion for small spacecraft. Edited by Micci M. M., Ketsdever A. D. Progress in Astronautics and Aeronautics, 2000. Vol. 187. AIAA, Reston, VA, 495 p.
[4] Epstein A.H. Micro_heat engines, gas turbines and rocket engines. The MIT Microengine Project, 28th AIAA Fluid Dynamics and 4th Shear Flow Control Conference, June, 1997.
[5] Janson S.W., Helvajian H., Breuer K. MEMS, Microengineering and Aerospace Systems. AIAA 99—3802. 1999.
[6] A Monopropellant Thruster for Nanosatellites. Small Satellite Conference, Logan, Utah, 2002.
[7] Investigation of Microthruster Nozzle Performance for Nanosatellite Applications. 37th AIAA Fluid Dynamics Conference, AIAA_2007—3985. 2007.
[8] Micromachined Propulsion systems for very small satellites [site]. Available at: http://lmts.epfl.ch/microthrust (accessed 7 October 2012).
[9] Ion electrospray propulsion system for cubesat (iEPS) [site]. Available at: http: // web. mit.edu/ aeroastro/ labs/spl/research_ieps.htm ((accessed 7 October 2012).
[10] Cassady R.J., Hoskins W.A. A micro pulsed plasma thruster (PPT) for the Dawgstar Spacecraft. Proc. IEEE Aerospace Conference. 2000, no. 4, pp. 7—14.
[11] Nanosail_D. Mission Overview [site]. Available at: http://www.crestnrp.org/nanosail/ (accessed 7 October 2012).
[12] Solar thermal rocket [site] Available at: http://en.wikipedia.org/wiki/Solar_thermal_rocket (accessed 7 October 2012).
[13] Hall C.D. Solar Orbit Transfer Vehicle [site] Available at:http://www.dept.aoe.vt.edu/~cdhall/courses/aoe4065/OldReport s/sotv.pdf (accessed 7 October 2012).
[14] Sippel M., Kauffmann J. Propulsion 2000 Phase 2, Solar Thermal Propulsion for Upper Stages, Final Report, SART TN_015/2003, DLR_IB 647—2003/13.
[15] Razgonnye bloki na osnove solnechnoi energodvigatel’noi ustanovki (SEDU) [site] Available at http://kerc.msk.ru /ipg/development/solar/sol_eng.shtml (accessed 7 October 2012).
[16] Nakamura T., Sullivan D., McClanahan J.A., Shoji J.M., Partch R., Quinn S. Solar thermal propulsion for small spacecraft. 40th AIAA/ASME/SAE/ASEE Joint propulsion conference and exhibit, Fort Lauderdale, FL. 2004, pp. 1–8.
[17] Programmnyi kompleks «Modelirovanie v tekhnicheskikh ustroistvakh» [The software package «Simulation in technical devices»]. [site] Available at: http://mvtu.power.bmstu.ru/ (accessed 7 October 2012).