The use of irregular lattice shells as actuators for controlling elastic deformations
Authors: Sorokin F.D., Chan Ki An | Published: 14.11.2013 |
Published in issue: #10(643)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: controllable elastic deformation, lattice shell, non-equilibrium configuration |
Actuators with separated pure and working chambers can eliminate contamination in devices applied in fine chemical, electronic and medical technologies and under pure vacuum conditions. This paper proposes a new type of actuators based on lattice shells with non-equilibrium initial configurations. The equilibrium configuration, which the shell seeks when internal pressure is applied, can be easy determined by minimizing the total potential energy of the system. An example of a cylindrical lattice shell taking the form of a torus when loaded by internal pressure is presented. This shell can be used in the designing of grippers and other devices. The stiffness of the structure is easily controlled by changing the pressure. Thus, irregular lattice shells are proposed for the first time to be used as actuators for controlling elastic deformations. The results of the research demonstrate the possibility of using lattice shells as actuators for controlling elastic deformations.
References
[1] Aleksandrova A.T. Novye sposoby peredachi i formirovaniia dvizheniia v vakuume [New modes of transmission and the formation of the movement in a vacuum]. Moscow, Vysshaia shkola publ., 1979. 69 p.
[2] Aleksandrova A.T., Vasin V.A. Sozdanie ideologii polnykh kompleksnykh sistem vakuumnogo oborudovaniia (osnovannykh na ustroistvakh i elementakh, iskliuchaiushchikh trenie dvizheniia i prednaznachennykh dlia raboty v oblasti mikro i nanoelektroniki i drugikh vysokikh tekhnologii) [Creating an ideology of complete integrated systems of vacuum equipment (based on the devices and elements, excluding the dynamic friction and designed to work in the field of micro- and nano-electronics and other high-tech)]. Sistemotekhnika [Systems Engineering], 2009, no. 7. Available at: URL: http://systech.miem. edu.ru/ 2009/vasin.htm(Accessed 26May 2013).
[3] Biderman V.L. Mekhanika tonkostennykh konstruktsii. Statika [Mechanics of thin-walled structures. Statics]. Moscow, Mashinostroenie publ., 1977. 488 p.
[4] Biderman V.L., Bukhin B.L. Uravneniia ravnovesiia bezmomentnoi setchatoi obolochki [The equilibrium equations of the membrane retina]. Izvestiia AN SSSR. Mekhanika tverdogo tela [A Journal of Russian Academy of Sciences. Mechanics of Solids]. 1966, no. 1, pp. 81—89.
[5] Sorokin F.D. Raschety setchatykh obolochek pri bol’shikh peremeshcheniiakh Diss. kand. tekhn. nauk [Calculations of lattice shells with large displacements. Cand. tech. sci. diss.]. Moscow, 1990. 159 p.
[6] Aiusheev T.V. Geometricheskie voprosy adaptivnoi tekhnologii izgotovleniia konstruktsii namotkoi iz voloknistykh kompozitsionnykh materialov [Geometric problems in adaptivemanufacturing technology of fiber-wound composite materials]. Ulan-Ude, Buriatskii nauchnyi tsentr sibirskogo otdeleniia RAN publ., 2005. 212 p.
[7] Sorokin F.D., Chan Ki An. Raschet setchatykh obolochek s nesimmetrichno ulozhennymi nitiami. Problemy mekhaniki sovremennykh mashin [Calculat ion of lat t ice shel ls wi th asymmetrically stacked threads. Problems of modern machines]. Materialy 5 mezhdunarodnoi konferentsii [Proceedings of the 5 International Conference]. Ulan-Ude, VSGUTU publ., 2012, vol. 3, pp. 101—104.
[8] Zhilin P.A. Vektory i tenzory vtorogo ranga v trekhmernom prostranstve [Vectors and tensors of the second rank in three-dimensional space]. St. Petersburg, SPbGTUpubl., 1992. 86 p.
[9] Sorokin F.D. Priamoe tenzornoe predstavlenie uravnenii bol’shikh peremeshchenii gibkogo sterzhnia s ispol’zovaniem vektora konechnogo povorota [Direct representation of the tensor equations of motion of large flexible rod using a vector of the final turn]. Izvestiia Rossiiskoi akademii nauk. Mekhanika tverdogo tela [A Journal of Russian Academy of Sciences. Mechanics of Solids]. 1994, no. 1, pp. 164—168.
[10] Casey J., Lam V. A Tensor Method for the Kinematical Analysis of Systems of Rigid Bodies. Mechanism and Machine Theory. 1986, vol. 21, no. 1, pp. 87—97.
[11] Geradin M., Cardona A. Flexible multibody dynamics: A finite element approach. New York, JohnWiley & Sons, 2001. 327 p.
[12] Wolfram S. The Mathematica book. Cambridge University Press, 1999. 1470 p.