Mechanics of deformation of a cylindrical shell by radial forces
Authors: Vinogradov Yu.I. | Published: 14.11.2013 |
Published in issue: #10(643)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: cylindrical shell, local load, theory, experiment, error of solution |
The study of mechanics of deformation of a cylindrical shell is important because such shells are widely used in mechanical engineering and many of them are subject to local loadings. When designing thin-walled structures, the local loading on a shell is often approximated by a concentrated force. This can be explained by the desire to simplify the computer algorithm: there is no need to solve differential equations with the right-hand side that appears due to surface loads. However, the representation of a surface load by a concentrated force introduces errors in the strength characteristics of a shell computed. Theoretically, the problem of deformation of a shell under concentrated loads can be solved by removing a singular point and using asymptotic formulas for the unknown functions. Many researchers solved this problem, but even approximate estimates of such errors have not been found yet. This article is the first to evaluate these errors. Formulas are given for a priori estimates of errors in computer calculations. The results of research will be useful when designing aircrafts.
References
[1] Vinogradov Iu.I.Metod resheniia lineinykh obyknovennykh differentsial‘nykh uravnenii [The method of solution of linear ordinary differential equations]. Doklady RAN [Reports of RAS]. 2006, vol. 409, no. 1, pp. 15—18.
[2] Vinogradov Iu.I. Metody vychisleni i i postroenie algoritmov resheniia kraevykh zadach stroitel’noi mekhaniki [Calculation methods and the construction of algorithms for solving boundary value problems in structural mechanics]. DAN SSSR [Reports of the Academy of Sciences]. 1988, vol. 298, no. 2, pp. 308—313.
[3] Filin A.P. Matritsy v statike sterzhnevykh system [Matrix in static rod systems]. Moscow, Leningrad, Literatura po stroitel’stvu publ., 1966. 438 p.
[4] Darevskii V.M. Opredelenie peremeshchenii i napriazhenii v tsilindricheskoi obolochke pri lokal ’nykh nagruzkakh [Determination of displacements and stresses in a cylindrical shell<неиunder local loads]. Sbornik Prochnost’ i dinamika aviatsionnykh dvigatelei [Collection of strength and dynamics of aircraft engines]. Moscow, Mashinostroenie publ., 1964, issue 1, pp. 23—83.
[5] Novozhilov V.V., Chernykh K.F. K raschetu obolochek na sosredotochennye vozdeistviia [Calculation of shells on a concentrated impact]. Sbornik Issledovaniia po uprugosti i plastichnosti [Study on the collection of elasticity and plasticity]. Leningrad, LGU publ., 1963, issue 2, pp. 48—58.
[6] Dem’’ianovich Iu.S. K voprosu ob izgibe tsilindricheskoi obolochki sosredotochennoi siloi [On the question of bending cylindrical shell concentrated force]. Sbornik Issledovaniia po uprugosti i plastichnosti [Study on the collection of elasticity and plasticity]. Leningrad, LGU publ., 1963, issue 2, pp. 121—131.
[7] Rabotnov Iu.N. Izgibtsilindr icheskoi obolochki sosredotochennoi siloi [Bending cylindrical shell concentrated force]. DAN SSSR [Reports of the Academy of Sciences]. 1946, vol. 52, no. 4, pp. 299—301.
[8] Juan S.W. Thin cylindrical shells subjected to concentrated loods. Quart. Appl. Math., 1946, vol. 4, no. 1, pp. 13—26.
[9] Beskin L. Local stress distribution in cylindrical shells. J. Appl Mech., 1946, vol. 13, no. 2, pp. 137—146.
[10] Ting L., Yuan S.W. On radial deflection of a cylinder of finite length with various end conditions. J. Aeronaut. Sci., 1958, vol. 25, no. 4, pp. 230—234.
[11] Chernyshev G.N. O deistvii sosredotochennykh sil i momentov na upruguiu obolochku proizvol’nogo ochertaniia [On the action of concentrated forces and moments on the elastic shell of arbitrary shape]. Prikladnaia matematika i mekhanika [Journal of Applied Mathematics and Mechanics]. 1963, vol. 27, issue 1, pp. 26—34.
[12] Lee S.W., Dai C.C., Yeom C.H. A triangular finite element for thin plates and shells. Int. J. Numer. Meth. Eng., 1985, vol. 21, no. 10, pp. 1813—1831.
[13] Lukasevich S. Lokal ’nye nagruzki v plast inakh i obolochkakh [Local loads in plates and shells]. Moscow, Mir publ., 1982. 542 p.
[14] Rumshinskii L.Z. Matematicheskaia obrabotka rezu’tatov eksperimenta [Mathematical processing of the experimental results]. Moscow, Nauka publ., 1971. 192 p.