Determination of the thickness of a composite layer of a spherical shell taking into account the width of a winding ribbon
Authors: Komkov M.A., Tarasov V.A., Zarubina O.V. | Published: 14.11.2013 |
Published in issue: #10(643)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: composite spherical shell, multi-zone winding, width of a winding ribbon, thickness of a wound layer |
The thickness of a wound layer in the vicinity of polar holes of a shell of revolution increases indefinitely according to a classical formula. At the same time, the formula is valid if the distance from the edge of the polar hole is greater than twice the width of a winding ribbon. The number of wound layers in the spherical shell may be greater than 20, which leads to an uncertainty in the calculation of strength of a composite shell as a whole. In this paper, the problem of analytical determination of the thickness of a single wound layer on the entire spherical surface is formulated and solved taking into account the width of a winding ribbon. Formulas for calculating the thickness and reinforcement angles on the entire spherical surface are presented. It is shown that the layer thickness in different zones of a composite spherical shell depends on the number of zones and the ribbon width. The thickness of a composite layer is determined for the first time for a spherical shell taking into account the width of a winding ribbon. The conducted research formed the basis for developing an engineering technique for calculating structural and technological parameters of the multi-zone winding process for spherical shells. The obtained formulas for determining the thickness and reinforcement angles in each layer allow the stress state of a multi-zone spherical shell under internal fluid or gas pressure to be calculated with required accuracy. The presented results of pressure tests of membrane and fiberglass spherical shells made by zonal winding of wide Mylar ribbons and narrow fiberglass strips will be useful in the design of new thin-walled spherical structures.
References
[1] Bulanov I.M., Smyslov V.I., KomkovM.A., Kuznetsov V.M. Sosudy davleniia iz kompozitsionnykh materialov v konstruktsiiakh LA [Pressure vessels made of composite materials in aircraft structures]. Moscow, TsNII informatsii publ., 1985. 308 p.
[2] Spravochnik po kompozitsionnym materialam [Handbook of composites ]. Ed. Liubin Dzh., in 2 book. Moscow, Mashinostroenie publ., 1988, book 1, 448 p.; book 2, 584 p.
[3] Komkov M.A., Tarasov V.A. Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Winding technology of composite structures of missiles and weapons]. Moscow, Bauman Press, 2011. 431 p.
[4] Zinov’ev P.A., Fomin B.Ia. Proektirovanie sosudov davleniia minimal’nogo vesa, obrazovannykh namotkoi steklonit’iu [Design of pressure vessels minimum weight formed by winding the fiber glass]. Sbornik nauchnykh trudov Pol imernye materialy v mashinostroenii [Collection of scientific works of polymeric materials in mechanical engineering]. Perm’, 1973, issue 127, pp. 91—96.
[5] Golushko S.K. Optimal’noe proektirovanie ravnoprochnykh kompozitnykh obolochek minimal’nogo vesa [Optimal design of full-strength composite shells of minimum weight]. Sovremennye problemy prikladnoi matematiki i mekhaniki: teoriia, eksperiment i praktika [Recent developments in applied mathematics and mechanics: theory, experiment and practice]. Novosibirsk, Russia Federation, 30 May – 4 June 2011, state registration no. 0321101160.
[6] Obraztsov I.F., Vasil’ev V.V., Bunakov V.A. Optimal’noe armirovanie obolochek vrashcheni ia iz kompozit sionnykh materialov [The optimum reinforcement shells of revolution made of composite materials]. Moscow, Mashinostroenie publ., 1977. 145 p.
[7] Vasil’ev V.V., Tarnopol’skii Iu.M. Kompozitsionnye materialy: Spravochnik [Composite materials: Directory]. Moscow, Mashinostroenie publ., 1990. 512 p.
[8] Vasil’ev V.V., Ivanov V.N., Mitkevich A.B. Proektirovanie kompozitnogo dnishcha ballonov postoiannogo davleniia v okrestnosti poliusnogo otverstiia [Designing composite underbody cylinders of constant pressure in the vicinity of the pole hole]. Mekhanika kompozitnykh materialov [Mechanics of Composite Materials]. 1987, no. 6, pp. 1115–1117.
[9] Krikanov A.A. Tolshchina kompozitnoi obolochki. Obrazovannoi metodom namotki [The thickness of the composite shell. Formed by winding]. Aviatsionnaia promyshlennost’ [Aircraft Industry]. 2002, no. 2, pp. 63—66.
[10] Komkov M.A., Kuznetsov V.M., Pogrebenko Iu.F. O primeneni i zhestkikh pol imernykh plenok dlia namotki germetiziruiushchikh obolochek stekloplastikovykh sosudov davleniia [On the application of rigid plastic films for sealing envelopes winding fiberglass pressure vessels]. Primenenie plastmass v mashinostroenii [Use of plastics in engineering]. 1974, no. 13, pp. 69—74.
[11] Bulanov I.M., Komkov M.A. Primenenie zhestkikh polimernykh plenok v kriogennykh toplivnykh sistemakh aerokosmicheskoi tekhniki [Application of rigid polymer films in cryogenic fuel systems of aerospace equipment]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical Univer s i ty. Ser. Mechanical Engineering]. 1992, no. 1, pp. 14–24.
[12] Sabel’nikov V.V., Komkov M.A., Samoriadov A.V. Tekhnologiia skleivaniia elementov kriogennogo truboprovoda [The technology of gluing elements of cryogenic pipeline]. Klei. Germetiki. Tekhnologii [Adhesives. Sealants]. 2005, no. 1, pp. 16–20.
[13] Komkov M.A., Bulanov I.M. Opredelenie konstruktivno-tekhnologicheskikh parametrov obolochek, namotannykh iz kompozitsionnykh materialov [Determination of structural and technological parameters of shells wound composite materials]. Moscow, Bauman Press, 1992. 84 p