Investigation of the antenna deployment behavior
Authors: Krylov A.V. | Published: 06.12.2013 |
Published in issue: #12(645)/2013 | |
Category: Calculation and Design of Machinery | |
Keywords: transformable space structures, simulation of deployment of space structures |
Despite the fact that significant advances in the design of transformable space structures are achieved, the problem of their reliable deployment remains topical. Ground testing of the deployment of such systems is not sufficiently adequate to ensure working efficiency of design elements. Therefore, the deployment dynamics can be analyzed only by means of mathematical modeling. In this study, modern software packages like EULER or MSC.Adams designed for the analysis of the dynamics of mechanical systems are proposed to use. The process of deploying a multilink closed space structure is demonstrated with a folding ring-type antenna. A general approach to the construction of mathematical models for the analysis of the deployment of such structures is presented. Specific features of the free deployment of the system are considered. The results of the calculations are needed as an input to the design and development of the components that provide the deployment.
References
[1] Zimin V.N., Sdobnikov A.N. Osobennosti modelirovaniia dinamiki krupnogabaritnykh transformiruemykh kosmicheskikh konstruktsii [Details of modeling the dynamics of large space structures transformed]. Reshetnevskie chteniia: materialy 14 Mezhdunarodnoi nauchnoi konferentsii, posviashchennoi pamiati general’nogo konstruktora raketno-kosmicheskikh sistem akademika M.F. Reshetneva [Reshetnev readings: 14 International scientific conference dedicated to the general designer of space rocket systems M.F. Reshetnev]. Krasnoiarsk, 10 — 12 November 2010, pt. 1, Sibsau publ., pp. 58—59.
[2] Bei N.A., Zimin V.N. Transformiruemye antenny bol’shikh razmerov dlia geostatsionarnykh kosmicheskikh apparatov [Transformable larger antenna for geostationary satellites]. Antenny [Antennas]. 2005, issue 10(101), pp. 24—27.
[3] Zimin V.N. Modelirovanie dinamiki raskrytiia kosmicheskikh konstruktsii fermennogo tipa [Space Frame Deploy Dynamics Modeling]. Polet [Flight]. 2008, no. 10, pp. 42—48.
[4] Georgiev A.F., Deviatov S.V., Romanov A.V., Sergievskii S.A., Khitrov I.V., Shchesniak S.S. Proektirovanie i raschet krupnogabaritnykh raskryvaiushchikhsia konstruktsii s pomoshch’iu programmnykh kompleksov MSC.Software [Engineering and design of large-scale pull-down structures with software systems MSC.Software]. CADmaster, 2009, no. 2-3(47-48), pp. 28—38.
[5] Ponomarev S.V. Trans formi ruemye ref lektory antenn kosmicheskikh apparatov [Transformable reflectors of spacecraft antennas]. Vestnik Tomskogo gosudarstvennogo universiteta. Matematika i mehanika [Bulletin of the Tomsk State University. Mathematics and Mechanics]. 2011, no. 4(16), pp. 110—119.
[6] Thomson M.W. The AstroMesh deployable reflector. 6-th International Mobile Satellite Conference. Ottawa, 1999, pр. 230—233.
[7] Thomson M.W. AstroMesh deployable reflectors for KU-and KA-band commercial satellites. AIAA Papers, 2002, no. 2032, pp. 1–9.
[8] Tibert A.G., Pellegrino S. Furlable reflector concept for small satellites. AIAA Papers, 2001, no. 1261, pp. 1—11.
[9] Shintate K., Terada K., Usui M., Tsujihata A., Miyasaka A. Large Deployable Reflector (LDR). Journal of the National Institute of Information and Communications Technology, 2003, vol. 50, no. 3/4, 2003, pp. 33—39.
[10] Krylov A.V., Churilin S.A. Modelirovanie raskrytiia solnechnykh batarei razlichnykh konfiguratsii [Simulation disclosure solar different configurations]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Ser. Mechanical Engineering]. 2011, no. 1, pp. 106—112.