The influence of relative position of fibers on the thermal conductivity of unidirectional fiber composites
Authors: Zarubin V.S., Kuvyrkin G.V., Savelyeva I.U. | Published: 27.02.2014 |
Published in issue: #2(647)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: unidirectional fiber composite, effective thermal conductivity |
Fiber composites are widely used in engineering as a construction material due to their favorable mechanical properties. Therefore, the modeling of heat conduction in these composites is relevant. In this paper, calculation relationships are obtained to estimate the effective thermal conductivity of unidirectional fiber composites in a direction perpendicular to the fibers. These relationships take into account the relative position of the fibers. Various fiber arrangements are considered under the assumption of transverse isotropy of a composite with respect to an axis parallel to the fibers. The convergence of the values of lower bounds of the effective thermal conductivity is proved by calculations taking into account the relative position of the fibers on the basis of the theory of mixtures. The proposed relationships can be used to predict the effective thermal conductivity of unidirectional fiber composites in a plane perpendicular to the fibers.
References
[1] Spravochnik po kompozitsionnym materialam [Handbook of composi tes]. Ed. Liubin Dzh. In 2 vol . Vol . 2, Moscow, Mashinostroenie publ., 1988. 584 p.
[2] Kompozitsionnye materialy: Spravochnik [Composite materials: Directory]. Ed. Vasil’ev V.V., Tarnopol’skii Iu.M. Moscow, Mashinostroenie publ., 1990. 512 p.
[3] Komkov M.A., Tarasov V.A. Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Winding technology of composite structures of missiles and weapons]. Moscow, Bauman Press, 2011. 432 p.
[4] Kalinchev V.A., Iagodnikov D.A. Tekhnologiia proizvodstva raketnykh dvigatelei tverdogo topliva [Technology of production of solid propellant rocket motors]. Moscow, Bauman Press, 2011. 688 p.
[5] Dul’nev G.N., Zarichniak Iu.P. Teploprovodnost’ smesei i kompozitsionnykh materialov [Thermal blends and composites]. Leningrad, Energiia publ., 1974. 264 p.
[6] Shermergor T.D. Teoriia uprugosti mikroneodnorodnykh sred [The theory of elasticity of micro environments]. Moscow, Nauka publ., 1977. 400 p.
[7] Kristensen R. Vvedenie v mekhaniku kompozitov [Mechanics of Composite Materials]. Moscow, Mir publ., 1982. 336 p.
[8] Golovin N.N., Zarubin V.S., Kuvyrkin G.N. Smesevye modeli mekhaniki kompozitov. Ch. 1. Termomekhanika i termouprugost’ mnogokomponentnoi smesi [Mixture Models of Compos i te Mechanics. Pt . 1. Thermal Mechanics and Thermoelasticity of Multicomponent Mixture]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences]. 2009, no. 3, pp. 36—49.
[9] Zarubin V.S., Kuvyrkin G.N., Savel’eva I.Iu. Effektivnye koeffitsienty teploprovodnosti kompozita s vkliucheniiami v vide udlinennykh ellipsoidov vrashcheniia [Effective Thermal Conductance of the Composite with Inclusions in the Form of Elongated El l ipsoid of Revolut ion]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2013, vol. 5, no. 6, pp. 276—282.
[10] Zarubin V.S., KuvyrkinG.N., Savel’eva I.Iu. Teploprovodnost’ voloknistykh kompozitov [Thermal conductivity of fiber composites]. Saatbrücken, LAP LAMBERT Academic Publishing, 2013. 128 p.
[11] Iankovskii A.P. Chislenno-analiticheskoe modelirovanie protsessov teploprovodnosti v prostranstvenno armirovannykh kompozi takh pr i intens ivnom teplovom vozdei s tvi i [Numerically-Analytical Modelling of Processes of Thermal Conductivity in Spatially Reinforced Composites at Intensive Thermal Action]. Teplovye protsessy v tekhnike [Thermal Processes in Engineering]. 2011, no. 11, pp. 500—516.
[12] Chen Y.-M., Ting J.-M. Ultra high thermal conductivity polymer composites. Carbon, 2002, vol. 40, pp. 359—362.
[13] Zarubin V.S. Inzhenernye metody resheniia zadach teploprovodnosti [Engineering methods for solving problems of heat conduction]. Moscow, Energoatomizdat publ., 1983. 328 p.
[14] Zarubin V.S., Kuvyrkin G.N. Matematicheskie modeli mekhaniki i elektrodinamiki sploshnoi sredy [Mathematical models of mechanics and electrodynamics of continuous media]. Moscow, Bauman Press, 2008. 512 p.
[15] Zarubin V.S., Kuvyrkin G.N. Two-sided estimates for thermal resistance of an inhomogeneous solid body. High Temperature, 2013, vol. 51, no 4, pp. 519—525.
[16] Spravochnik po kompozitsionnym materialam [Handbook of composites]. Ed. Liubin Dzh. In 2 vol. Vol. 1, Moscow, Mashinostroenie publ., 1988. 448 p.
[17] Vuster U. Primenenie tenzorov i teorii grupp dlia opisaniia fizicheskikh svoistv kristallov [The use of tensors and group theory to describe the physical properties of crystals], Moscow, Mir publ., 1977. 384 p.
[18] Gradshtein I.S., Ryzhik I.M. Tablitsy integralov, summ, riadov i proizvedenii [Tables of integrals, sums, series and products]. Moscow, Fizmatgiz publ., 1963. 1100 p.