Numerical analysis of a gas veil cooling system for high-aspect-ratio transonic cylindrical channels
Authors: Voronetskiy A.V., Aleksandrov V.Yu., Arefyev K.Yu. | Published: 21.03.2014 |
Published in issue: #3(648)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: gas generator, veil cooling, transonic flow, mathematical modeling. |
High-elongation transonic channels distinguished by the high thermal loading of the walls are widely used in modern power plants. To ensure the operability of structural elements of such channels is a scientific and technological challenge. This is particularly important for small power plants. In many cases, classical cooling flows do not comply with technological requirements, complicate the design, increase construction costs, or unacceptable according to specifications. One of the possible implementations of the thermal protection system is the veil cooling. However, the scientific literature pays little attention to the decay mechanisms of transonic channel veil cooling taking into account ejection, viscosity, and shockwave effects. In this study, the mathematical modeling of a high-elongation channel veil cooling is performed and its characteristics are determined. The calculating dependences are established to assess the length of decomposition regions for the veil layer and the flow core, the dynamics of mixture of the blown-in and main flows, as well as the level of heat flows in the channel wall. The results of research can be used in designing high-temperature tracts and exhausts of gas generators, nozzles of technological installations, and mixing and afterburning chambers.
References
[1] Voronetskii A.V., Aref’ev K.Iu. Analiz oblasti effektivnogo primeneniia zakisi azota v kachestve komponenta topliva dlia dvigatel’nykh ustanovok malykh kosmicheskikh apparatov [Analysis of effective use of nitrous oxide as a fuel component for propulsion systems of small spacecrafts]. Nauka i obrazovanie MGTU im. N.E. Baumana [Science and Education of the Bauman MSTU]. 2012, no. 9. Available at: http://technomag.edu.ru /doc/ 450400.htm. (Accessed 04 September 2013). Doi: 10.7463/0912.0450400.
[2] Voronetskii A.V., Polianskii A.R., Aref’ev K.Iu. Ustanovka sverkhzvukovogo gazoplamennogo napyleniia pokrytii s ispol’zovaniem v kachestve okislitelia N2O [Installation supersonic flame spraying using N2O as the oxidizing agent]. Perspektivnye tekhnologii samoletostroeniia v Rossii i mire. Trudy Vserossiiskoi nauchno-prakticheskoi konferentsii molodykh spetsialistov i uchenykh [Promising technologies aircraft in Russia and the world. Proceedings of the All-Russian scientific-practical conference of young scientists and specialists]. Novosibirsk, SibNIA publ., 2011, pp. 67–72.
[3] Voronet ski i A.V. , Suchkov S.A. , Fi l imonov L.A. Peculiarities of high-temperature two-phase flow of combustion products in channels with an intentionally structured system of shock-waves. Thermophysics and Aeromechanics, 2007, vol. 14, no. 2, pp. 201–210.
[4] Karimova A.G. , Dezider’ev S.G. , Zubarev V.M., Khabibullin M.G. Rezul’taty eksperimental’nogo issledovaniia protsessov teploobmena i effektivnosti teplovoi zavesy pri poristom vduve. [On experimental studies of processes of heat exchange and efficiency of thermal curtain at porous injection]. Izvestiia vysshikh uchebnykh zavedenii. Aviatsionnaia tekhnika [Russian Aeronautics]. 2006, no. 1, pp. 37–39.
[5] Perepechko L.N. Investigation of heat mass transfer processes in the boundary layer with injection. Archives of Thermodynamics, 2000, vol. 21, no. 3–4, pp. 41–54.
[6] Volchkov E.P., Terekhov V.I., Terekhov V.V. Struktura techeniia, teplo- i massoobmena v pogranichnykh sloiakh so vduvom khimicheski reagiruiushchikh veshchestv [Structure of the flow, heat and mass transfer in boundary layers with injection of chemically reacting substances]. Fizika goreniia i vzryva [Combustion, Explosion and Shock Waves]. 2004, vol. 40, no. 1, pp. 3–20.
[7] Piralishvilli Sh.A., Poliaev V.M., Sergeev M.N. Vikhrevoi effekt. Eksperiment, teoriia, tekhnicheskie resheniia [Vortex effect. Experiment, theory, technical solutions]. Moscow, UNPTs Energomash publ., 2000. 412 p.
[8] Liashkov V.I. Teoret icheskie osnovy teplotekhniki [Theoretical basics of heat]. Moscow, Mashinostroenie publ., 2005. 260 p.
[9] Gus’kov O.V., Kopchenov V.I. Chislennoe issledovanie struktury techeniia v kanele pri sverkhzvukovykh usloviiakh na vkhode [Numerical study of flow structure in the channel conditions at supersonic inlet]. Aeromekhanika i gazovaia dinamika [Aeromechanics and gas dynamics]. 2001, no. 1, pp. 28–39.
[10] Arkhipov V.A., Matvienko O.V., Trofimov V.F. Combustion of sprayed liquid fuel in a swirling flow. Combustion, Explosion, and Shock Waves, 2005, vol. 41, no. 2, pp. 140–150.
[11] Frik P.G. Turbulentnost’: podkhody i modeli [Turbulence: Approaches and Models]. Moscow, Regular and Chaotic Dynamics publ., 2010. 107 p.
[12] User’s manual on website. Software products and services from ANSYS and Fluent. Available at: http: // www.fluent.com (accessed 15 October 2013).