Modeling of coupled aerogasdynamics and heat transfer processes on the thermal protection surface of a future hypersonic aircraft
Authors: Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N., Syzdykov E.K. | Published: 24.03.2014 |
Published in issue: #3(648)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: aerogasdynamics, hypersonic aircraft, coupled problems, heat transfer, numerical modeling, TVD scheme, adaptive mesh, thermal protection, ablative beat shield materials. |
To create future high-speed hypersonic aircrafts, it is necessary to predict with sufficient accuracy heat flows and temperature fields on the surface of the aircraft caused by aerodynamic heating. The surface temperature is currently calculated in two steps: the calculation of the aerogasdynamic flow parameters of a “cold” surface and the calculation of the surface temperature of the real structure. The method that is currently used for calculating the surface temperature of hypersonic vehicles can give significant errors because of the intensive aerodynamic heating of ablative beat shield materials throwing the multicomponent gas mixture into the incident flow. In this paper, a new numerical method for solving the coupled problem of aerogasdynamics and internal heat transfer in future hypersonic aircraft structures is proposed. The method implies an iterative solution of the following three independent problems: ideal gas dynamics, viscous gas dynamics on the basis of Navier-Stokes equations for a three-dimensional boundary layer, and heat conduction in a hypersonic aircraft shell. Algorithms for the numerical analysis of these problems in non-orthogonal curvilinear coordinates are developed. The TVD-type finite difference schemes were modified to be applied to geometrically adaptive grids. The results of simulation of the flow about an ellipsoidal nose segment of a model hypersonic aircraft are presented. The results of calculation of the adiabatic wall temperature in the case of heat transfer between the gas and the wall showed that the heat transfer must be taken into account when calculating the temperature distribution on the surface of a hypersonic aircraft. The presented numerical method can be applied to the analysis of aerodynamics of hypersonic aircrafts.
References
[1] Anderson J.D. Hypersonic and High-Temperature Gas Dynamics. American Institute of Aeronautics and Astronautics, Reston, Virginia, 2006. 232 p.
[2] Giperzvukovaia aerodinamika i teplomas soobmen spuskaemykh kosmicheskikh apparatov i planetnykh zondov [Hypersonic aerodynamics and heat transfer reentry spacecraft and planetary probes]. Ed. Tirskii G.A. Moscow, FIZMATLIT publ., 2011. 548 p.
[3] McNamara J.J. , Fr iedmann P.P. Aeroelast ic and Aerothermoelastic Analysis of Hypersonic Vehicles: Current Status and Future Trends. 48th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 23–26 April 2007. Honolulu, Hawaii, available at: http:// www. mecheng.osu.edu/lab/cael/sites/default/files/AIAA–2007–2013 (accessed 20 November 2013). 55 p.
[4] Crowell A.R., McNamara J.J., Miller B.A. Hypersonic Aerothermoelastic Response Prediction of Skin Panels Using Computational Fluid Dynamic Surrogates. ASDJournal, 2011, vol. 2, no. 2, pp. 3–30.
[5] Dimitrienko Yu.I. Termomechanics of Composites under High Temperatures, Dordrecht, Boston, London, Kluwer Academic Publishers, 1999. 347 p.
[6] Dimitrienko Yu. Heat-Mass-Transport and Thermal Stresses in Porous Charring Materials. Transport in Porous Media, 1997, no. 27(2), pp. 143–170.
[7] Dimitrienko Yu.I. Thermomechanical behaviour of composite materials and structures under high temperatures: 1. Materials. Composites Part A, Applied Science and Manufacturing, 1997, no. 28(5), pp. 453–461.
[8] Dimitrienko Iu.I., Zakharov A.A., Koriakov M.N., Syzdykov E.K. Chislennoe reshenie sopriazhennoi zadachi aerogazodinamiki i vnutrennego teploperenosa v konctruktsiiakh giperzvukovykh letatel’nykh apparatov [Numerical solution of the dual problem aerogasdynamics and internal heat transfer in hypersonic aircraft designs]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences]. Spetsial’nyi vypusk no. 6 Modelirovanie i issledovanie fizicheskikh i tekhnicheskikh system [Special issue no. 6 Simulation and study of the physical and technical systems]. 2012, pp. 84–101.
[9] Dimitrienko Iu.I., Minin V.V., Syzdykov E.K. Chislennoe model irovanie protsessov teplomassoperenosa i kinet iki napriazhenii v termodestruktiruiushchikh kompozitnykh obolochkakh [Numerical modeling of heat-mass-transfer and s t res s kinet ics in thermodes t ruct ing compos i te shel l s ]. Vychislitel’nye tekhnologii [Computational Technologies]. 2012, vol. 17, no. 2, pp. 43–59.
[10] Dimitrienko Iu.I., Zakharov A.A., Koriakov M.N. Model’ trekhmernogo pogranichnogo sloia i ee chislennyi analiz [Three-dimensional model of boundary layer and its numerical analysis]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Natural Sciences]. 2011, special issue, pp. 136–150.
[11] Dimitrienko Iu.I., Kotenev V.P., Zakharov A.A. Metod lentochnykh adaptivnykh setok dlia chislennogo modelirovaniia v gazovoi dinamike [Adaptivemesh tapemethod for numerical simulation of gas dynamics]. Moscow, FIZMATLIT publ., 2011. 286 p.
[12] Dimitrienko Iu.I., Koriakov M.N., Zakharov A.A., Syzdykov E.K. Razvitie metoda lentochno-adaptivnykh setok na osnove skhem TVD dlia resheniia zadach gazovoi dinamiki [Development of the band-adaptive grids based on TVD schemes for solving problems of gas dynamics]. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Natural Sciences]. 2011, no. 2, pp. 87–97.
[13] Gil’manov A.N. Metody adaptivnykh setok v zadachakh gazovoi dinamiki [Methods of adaptive grids in problems of gas dynamics]. Moscow, FIZMATLIT publ., 2000. 248 p.
[14] Dimitrienko Iu.I. Tenzornoe ischislenie [Tensor calculus]. Moscow, Vysshaia shkola publ., 2001. 575 p.
[15] Golubev A.V., Kalugin V.T., Lutsenko A.Iu., Golubev A.G., Kalugna V.T. Aerodinamika [Aerodynamics]. Moscow, Baumana Press, 2010. 687 p.
[16] Bratchev A.V., Zabarko D.A., Vatolina E.G., Korobkov A.A., Sakharov V.I. Voprosy teplotekhnicheskogo proektirovaniia perspektivnykh giperzvukovykh letatel’nykh apparatov aeroballisticheskogo tipa [Questions teplotehnicheskogo design perspective aeroballistic hypersonic aircraft type]. Izvestiia institute inzhenernoi fiziki [Proceedings of the Institute of Engineering Physics]. 2009, vol. 2, no. 12, pp. 42–49.