Modeling of the deformation process and evaluation of the bearing capacity of a thin-walled structure in the ground
Authors: Kayumov R.A., Shakirzyanov F.R., Gavryushin S.S. | Published: 30.05.2014 |
Published in issue: #6(651)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: soil mechanics, creep, plasticity, ultimate load, dilatancy, finite element method |
Estimating the strength and durability of thin-walled plastic pipes in the ground is of particular interest at present. This paper deals with the numerical analysis of the ultimate load causing displacements of the ground in which a polyethylene corrugated pipe is located. An elasticviscousplastic model was developed to describe deformations of a thin-walled structure in the ground. The model takes into account the dilatancy and changes in mechanical characteristics of the ground over time and the effect of temperature on the mechanical properties of polyethylene. Numerical experiments were performed using a finite element code developed by the authors. The results of study show the influence of the geometrical and mechanical characteristics of the plastic pipe on the displacements of the ground. The ultimate load causing this phenomenon is determined.
References
[1] Berezhnoi D.V., Paimushin V.N. Matematicheskoe modelirovanie etapov stroitel’stva slozhnykh sooruzhenii po transformiruiushchimsia raschetnym skhemam [Mathematical modeling of the stages of the construction of complex structures by transforming design schemes]. Naukoemkie tekhnologii [Science Intensive Technologies]. 2005, vol. 6, no. 8–9, pp. 59–64.
[2] Berezhnoi D.V., Sagdatullin M.K., Sultanov L.U. Modelirovanie deformirovaniia obdelki tonnelia metropolitena, raspolozhennoi v grunte slozhnoi fizicheskoi prirody [Simulation of deformation of tunnel lining subway, located in the soil complex physical nature]. Vestnik Kazanskogo tekhnologicheskogo universiteta [Herald Kazan Technological University]. 2013, vol. 16, no. 9, pp. 250–255.
[3] Bazhenov V.G., Lomunov V.K., Osetrov S.L., Pavlenkova E.V. Eksperimental’no-raschetnyi metod issledovaniia bol’shikh uprugo-plasticheskikh deformatsii tsilindricheskikh obolochek pri rastiazhenii do razryva i postroenie diagramm deformirovaniia pri neodnorodnom napriazhenno-deformirovannom sostoianii [Experimental and computational method of studying large elastoplastic deformations of cylindrical shells in tension to rupture and constructing strain diagrams for an inhomogeneous stress-strain state]. Prikladnaia mekhanika i tekhnicheskaia fizika [Journal of Applied Mechanics and Technical Physics]. 2013, vol. 54, no. 1(317), pp. 100–107.
[4] Sultanov L.U., Berezhnoi D.V. Matematicheskoe modelirovanie nesushchei sposobnosti gruntovykh nasypei [Mathematical simulation of the dirt fills load-carrying capacity]. Vestnik KGTU im. A.N. Tupoleva [Vestnik Kazan State Technical University A.N. Tupolev]. 2013, no. 1, pp. 117–124.
[5] Gavriushin S.S., Baryshnikova O.O, Boriskin O.F. Chislennye metody v dinamike i prochnosti mashin [Numerical methods in dynamics and strength of machines]. Moscow, Bauman Press, 2012. 492 p.
[6] Abrate S. Criteria for yielding or failure of cellular materials. Journal of Sandwich Structures and Materials, 2008, vol. 10, pp. 5–51.
[7] Ivlev D.D. Mekhanika plasticheskikh sred. Teoriia ideal’noi plastichnosti [Mechanics of plastic media. The theory of perfect plasticity]. Moscow, Fizmatlit publ., vol. 1, 2001. 448 p.
[8] Lavrov I.G. Utochnenie matematicheskoi modeli napriazhennogo sostoianiia polietilenovykh trub dlia rascheta pri razlichnykh temperaturakh [Refinement of the mathematical model of stress state of polyethylene pipes for the calculation at different temperatures]. Fundamental’nye issledovaniia [Fundamental research]. 2007, no. 1, pp. 44–45.
[9] Thomas H.R., Missoum H. Three-dimensional coupled heat, moisture, and air transfer in a deformable unsaturated soil. International Journal for Numerical Methods in Engineering, 1999, vol. 44, no. 7, pp. 919–943.
[10] Kaiumov R.A., Shakirzianov F.R. Modelirovanie povedeniia i otsenka nesushchei sposobnosti sistemy tonkostennaia konstruktsiia — grunt s uchetom polzuchesti i degradatsii grunta [Behavior modeling and evaluation of the carrying capacity of thin — walled structures, taking into account soil creep and soil degradation]. Uchenye zapiski Kazanskogo Universiteta. Ser. Fiziko-matematicheskie nauki [Proceedings of Kazan University. Physics and Mathematics Series]. 2011, vol. 153, no. 4, pp. 67–75.
[11] Kaiumov R.A., Shakirzianov F.R., Shevchenko S.Iu. Otsenka nesushchei sposobnosti sistemy konstruktsiia — grunt [Evaluation of bearing capacity of the soil — structure]. Izvestiia Kazanskogo Gosudarstvennogo Arkhitekturno-Stroitel’nogo Universiteta [News of the Kazan State University of Architecture and Engineering]. 2012, no. 4(22), pp. 496–501.
[12] GOST 16338–85. Polietilen nizkogo davleniia. [Standard 16338–85. Low-pressure polyethylene]. Moscow, Standards publ., 2008. 35 p.