Study of the thermal state of a resonator in a gas-dynamic system initiating monopropellant decomposition
Authors: Vorozheeva O.A., Arefyev K.Yu. | Published: 04.07.2014 |
Published in issue: #7(652)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: gas-dynamic system, thermal state, monopropellant, mathematical modeling |
The development of small high-enthalpy plasma generators (SHEPG) is dictated by the use of ecological high-energy monopropellants including nitrous oxide (N2O). Gas-dynamic resonance systems (GRS) have great potential in initiating the decomposition of N2O in SHEPGs. This paper deals with the mathematical modeling of the thermal state of GRS resonant cavity walls, which is very important because of high heat loads acting on these structural elements. The results of test calculations of temperature distribution in resonant cavity walls are presented for the case of N2O decomposition. The critical times of continuous and pulsed GRS operation are determined. The GRS endurance is analyzed taking into account various heat-resistant materials and protective coatings deposited on resonant cavity walls. The results of the numerical analysis are compared with experimental studies. The potential use of a gas-dynamic initiation system is discussed, and the methods of increasing its endurance as applied to various power plants using N2O as a monopropellant are proposed.
References
[1] Tsentral’nyi institut aviatsionnogo motorostroeniia im. P.I. Baranova. 75 let tvorcheskoi nauchnoprakticheskoi deiatel’nosti v aviadvigatelestroenii [Central Institute of Aviation Motors n.a. P.I. Baranov. 75 years of creative scientific activity in aircraft engine design]. Ed. Skibin V.A. Moscow, Aviamir publ., 2005. 656 p.
[2] Zhidkostnye raketnye dvigateli [Liquid propellant rocket engines]. Ed. Dobrovol’skii M.V., Iagodnikov D.A. Moscow, Bauman Press, 2005. 488 p.
[3] Zakirov V., Sweeting M., Lawrence T., Sellers J. Nitrous Oxide as a Rocket Propellant. Acta Astronautica, 2001, vol. 48, issue 5–12, pp. 353–362.
[4] Voronetsky A.V., Suchkov S.A., Filimonov L.A. Peculiarities of high-temperature two-phase flow of combustion products in channels with an intentionally structured system of shock-waves. Thermophysics and Aeromechanics, 2007, vol. 14, no. 2, pp. 201–210.
[5] Ignatov A.S., Timoshinova T.S., Kur’ianov S.A., Il’ichev V.A., Lebedinskii S.A. Razrabotka ispytatel’nogo stenda dlia eksperimental’noi otrabotki vodorodnoi paroturbinnoi energoustanovki [Working out of the test bed for experimental working off of hydrogen steam turbine power installation]. Vestnik Voronezhskogo gosudarstvennogo tekhnicheskogo universiteta [Vestnik Voronezh State Technical University]. 2013, vol. 9, no. 4, pp. 46–53.
[6] Gurov A.A., Badaev F.Z., Ovcharenko L.P., Shapoval V.N. Khimiia [Chemistry]. Moscow, Bauman Press, 2004. 748 p.
[7] Arefyev K.J., Berlov I.V., Zakharov V.S., Ilchenko M.A. Numerical and experimental investigation of the resonant system model sample gasdynamic ignition hight-temperature flow generator. International Conference on the Methods of Aerophysical Research, Abstracts, part II, Kazan, Russia, 2012, pp. 21–22.
[8] Stankus S.V., Savchenko I.V., Baginskii A.V., Verba O.I., Prokop’ev A.M., Khairulin R.A. Thermal conductivity and thermal diffusivity coefficients of 12Kh18N10T stainless steel in a wide temperature range. High Temperature, 2008, vol. 46, no. 5, pp. 731–733.
[9] Marochnik stalei i splavov [Database of steels and alloys]. Ed. Zubenko A.S. Moscow, Mashinostroenie publ., 2003. 784 p.
[10] Aleksandrenkov V.P. Raschet naruzhnogo protochnogo okhlazhdeniia kamery ZhRD. Metodicheskie ukazaniia k domashnemu zadaniiu po distsipline «Teplozashchita i prochnost’ konstruktsii ZhRD» [Calculation of the outer flow chamber cooling engines. Methodological guidelines for homework on the subject «Thermal insulation and structural strength LRE»]. Moscow, Bauman Press, 2012. Available at: http://wwwcdl.bmstu.ru/e1/GRD.html (accessed 24 April 2014).
[11] Osintsev O.E., Fedorov V.N. Med’ i mednye splavy. Otechestvennye i zarubezhnye marki: spravochnik [Copper and copper alloys. Domestic and foreign brands: directory]. Moscow, Mashinostroenie publ., 2004. 336 p.
[12] Novye tekhnologicheskie protsessy i nadezhnost’ GTD. Vypusk 7. Obespechenie prochnostnoi nadezhnosti rabochikh lopatok vysokotemperaturnykh turbin. Nauchno-tekhnicheskii sbornik [New processes and reliability of turbine engines. Issue 7. Ensuring strength reliability of working blades high turbines. Scientific and technical collection]. Ed. Nozhnitskii Iu.A., Tkachenko R.I. Moscow, TsIAM publ., 2008. 172 p.