An algorithm for the quantitative analysis of mathematical models of deformation of a cylindrical shell
Authors: Aflitonov D.V., Vinogradov Yu.I. | Published: 01.08.2014 |
Published in issue: #8(653)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: cylindrical shell, roots of characteristic equations, mathematical model, analytical solution, boundary value problem |
An intensive use of cylindrical shells for the construction of water supply lines, gas and oil pipelines, as well as tanks used in chemical industries and ships, submarines, and aircrafts structures stimulates the development of various mathematical models describing their stress-strain states. The roots of the characteristic equations of well-known mathematical models of a cylindrical shell are compared and analyzed. It has been found that the roots (both real and complex) differ qualitatively, which involves the analysis of the mathematical models. For this purpose, an efficient algorithm for analytical solutions of test boundary value problems for the comparative quantitative analysis of the mathematical models of mechanics of shells has been developed.
References
[1] Matveenko A.M., Nerubailo B.V. Voprosy prochosti, ustoichivosti i nadezhnosti konstruktsii [Questions of strength, stability and reliability of structures]. Moscow, Moscow Aviation<неиInstitute publ., 2013. 158 p.
[2] Vlasov V.Z. Obshchaia teoriia obolochek i ee prilozhenie v tekhnike [The general theory of shells and its application in engineering]. Moscow, Leningrad, Gostekhizdat publ., 1949. 784 p.
[3] Vlasov V.Z. Izbrannye trudy [Selected Works]. Moscow, AN SSSR publ., vol. 1, 1962. 528 p.
[4] Vlasov V.Z. Izbrannye trudy. Tom 3. Tonkostennye prostranstvennye sistemy [Selected Works. Vol. 3. Thin-walled spatial system]. Moscow, ONIKS publ., 2013. 488 p.
[5] Pogorelov V.I. Stroitel’naia mekhanika tonkostennykh konstruktsii [Structural mechanics of thin-walled structures ]. St. Petersburg, BKhV-Peterburg publ., 2007. 528 p.
[6] Gol’denveizer A.L. Teoriia uprugikh tonkikh obolochek [Theory of thin elastic shells]. Moscow, Nauka publ., 1976. 512 p.
[7] Darevskii V.M. Opredelenie peremeshchenii i napriazhenii v tsilindricheskoi obolochke pri lokal’nykh nagruzkakh [Determination of displacements and stresses in a cylindrical shell under local loads]. Sbornik Prochnost’ i dinamika aviatsionnykh dvigatelei [Collection of strength and dynamics of aircraft engines]. Moscow, Mashinostroenie publ., 1964, issue 1, pp. 23–83.
[8] Novozhilov V.V. Teoriia tonkikh obolochek [Theory of thin shells]. St. Petersburg, Saint Petersburg State University publ., 2010. 380 p.
[9] Fliugge V. Statika i dinamika obolochek [Statics and dynamics of shells]. Moscow, Gosstroiizdat publ., 1961. 306 p.
[10] Boiarshinov S.V. Osnovy stroitel’noi mekhaniki mashin [Fundamentals of structural mechanics of machines]. Moscow, ONIKS publ., 2012. 456 p.
[11] Korn G.A., Korn T.M. Spravochnik po matematike dlia nauchnykh rabotnikov i inzhenerov [Mathematical Handbook for Scientists and Engineers]. St. Petersburg, Lan’ publ., 2003. 823 p.
[12] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery P.B. Numerical recipes. The art of scientific computing, Cambridge university press, 2007. 1262 p.
[13] Vinogradov A.Iu., Vinogradov Iu.I. Funktsii Koshi–Krylova i algoritmy resheniia kraevykh zadach teorii obolochek [The Cauchy-Krylov algorithms for solving boundary value problems of the theory of shells]. Doklady Akademii nauk [Reports of the Academy of Sciences]. 2000, vol. 375, no. 3, pp. 331–333.