Technological principles of reducing the cycle time and improving the manufacturing safety of the thermal protection system for spacecraft reentry
Authors: Tarasov V.A., Romanenkov V.A., Komkov M.A. | Published: 01.08.2014 |
Published in issue: #8(653)/2014 | |
Category: Calculation and Design of Machinery | |
Keywords: reentry spacecraft, thermal protection system, woven filler, phenolformaldehyde binder, porous material impregnation time, modification of a binder by carbon nanotubes, complex autoclave |
The development of manned space flights is impossible without reliable protection of spacecraft and crew. The fundamentals of TPS technologies for reentry spacecraft (RSC) are discussed, and the necessity of multiple TPS impregnation is proved. A technical approach for estimating the cycle time of TPS impregnation by a binder is presented. Relationships are deduced to calculate the impregnation time taking into account the porosity of the woven phenol-formaldehyde filler, binder viscosity, the pressure drop at the inlet and outlet paths, and the effective diameter of the filler fibers. It is shown that the time of each subsequent impregnation changes exponentially. The two most important problems to be solved include the problem of reducing the impregnation time and the problem of ensuring fire safety during drying the preformed material containing alcohol in a complex autoclave. Innovative ways to reduce the impregnation cycle time and improve the technological process safety are proposed. The results of study prove that: 1) the modification of a binder by carbon nanotubes can cause a significant reduction in viscosity and, consequently, decrease the TPS impregnation time; 2) the use of the autoclave equipment makes it possible to combine several operations at one workplace and provide drying, pressing, and heating operations without oxygen, which completely eliminates the risk of fires.
References
[1] Semenov A.A. Spuskaemaia kapsula kosmicheskogo apparata [Entry capsule spacecraft]. St. Petersburg, Neva publ., 2009. 72 p.
[2] Vlasov V.I., Zalogin G.N., Kovalev R.V., Churakov D.A. Luchisto-konvektivnyi teploobmen spuskaemogo apparata s razrushaemoi teplovoi zashchitoi [Radiant-convective heat transfer from the lander destroyed thermal protection]. Fiziko-khimicheskaia kinetika v gazovoi dinamike [Physico-chemical kinetics in gas dynamics]. 2012, vol. 13, issue 2, 17 c. Available at: http://chemphys.edu.ru/media/files/2012-12-26-001.pdf (accessed 2 June 2014).
[3] Kamalov V.S. Proizvodstvo kosmicheskikh apparatov [Production spacecraft]. Moscow, Mashinostroenie publ., 1982. 280 p.
[4] Bulanov I.M., Vorobei V.V. Tekhnologiia raketnykh i aerokosmicheskikh konstruktsii iz kompozitsionnykh materialov [Missile technology and aerospace composite structures]. Moscow, Baumana Press, 1998. 516 p.
[5] Tarasov V.A., Stepanishchev N.A., Romanenkov V.A., Aliamovskii A.I. Povyshenie kachestva i tekhnologichnosti poliefirnoi matritsy kompozitnykh konstruktsii na baze ul’trazvukovogo nanomodifitsirovaniia [Improving the quality and technology of polyester matrix composite structures based on ultrasonic nanomodifitsirovannye]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. Special issue no. 3 Advanced Materials, design and technology of space-rocket engineering, 2012, pp. 166–174.
[6] Tarasov V.A., Stepanishchev N.A. Primenenie nanotekhnologii dlia uprochneniia poliefirnoi matritsy kompozitsionnogo materiala [The application of nanotechnology to harden polyester matrix composite material]. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. Special issue Actual problems of development of rocket and space technology and weapons systems, 2010, pp. 207–216.
[7] Strekalov A.F., Pashchenko V.A., Romanenkov V.A., Morokova E.V., Bazanov V.V., Zimovskii A.V., Andriianov V.S., Starostin V.V., Tarasov V.A., Filimonov A.S. Termovakuumnaia ustanovka dlia obrabotki izdeliia (ii) [Thermal vacuum unit for processing the product (s)]. Patent RF no. 2439455, 2010.
[8] Strekalov A.F., Pashchenko V.A., Romanenkov V.A., Morokova E.V., Bazanov V.V., Zimovskii A.V., Andriianov V.S., Starostin V.V., Tarasov V.A., Filimonov A.S. Sposob izgotovleniia mnogosloinykh izdelii [Method of manufacturing multilayer products]. Patent RF no. 2450921, 2012.
[9] Leont’ev N.E. Osnovy teorii fil’tratsii [Fundamentals of the theory of filtration]. Moscow, TsPI pri mekhaniko-matematicheskom fakul’tete MGU publ., 2009. 88 p.
[10] Komkov M.A., Tarasov V.A. Tekhnologiia namotki kompozitnykh konstruktsii raket i sredstv porazheniia [Winding technology of composite structures missiles and weapons]. Moscow, Bauman Press, 2011. 431 p.
[11] D’iachkov P.N. Uglerodnye nanotrubki: stroenie, svoistva, primeneniia [Carbon nanotubes: structure, properties, applications]. Moscow, Binom publ., 2006. 293 p.
[12] Rakov E.G. Nanotrubki i fullereny [Nanotubes and fullerenes]. Moscow, Logos publ., 2006. 376 p.
[13] Ray S.S., Bousmina M. Polymer Nanocomposites and Their Applications. American Scientific Publishers, Stevenson Ranch, California, 2006. 600 p.
[14] Tkachev A.G., Shubin I.N., Popov A.I. Promyshlennye tekhnologii i innovatsii. Oborudovanie dlia nanoindustrii i tekhnologiia ego izgotovleniia [Industrial technology and innovation. Equipment for nanotechnology and its technology is]. Tambov, TSTU publ., 2010. 132 p.
[15] Bulanov I.M., Smyslov V.I., Komkov M.A., Kuznetsov V.M. Sosudy davleniia iz kompozitsionnykh materialov v konstruktsiiakh letatel’nykh apparatov [Pressure vessels made of composite materials in the construction of aircraft]. Moscow, TsNII informatsii publ., 1985. 308 p.
[16] Tarasov V.A., Beliakov E.V. Matematicheskoe modelirovanie protsessa neizotermicheskogo otverzhdeniia polimernykh kompozitnykh konstruktsii RKT [Mathematical Simulation of Nonisothermal Hardening of Polymeric Composite Structures of Rocket and Space Machinery]. Vestnik MGTU im. N. E. Baumana. Ser. Mashinostroenie [Herald of the Bauman Moscow State Technical University. Mechanical Engineering]. 2011, no. 1(82), pp. 106–116.