Optimization of the gas-liquid damper pin in the aircraft landing gear
Authors: Nikitin E.A., Belkin A.E. | Published: 04.09.2023 |
Published in issue: #9(762)/2023 | |
Category: Mechanics | Chapter: Theoretical Mechanics, Machine Dynamics | |
Keywords: landing gear, liquid-gas damper, mathematical model, pin profile, global optimization, surrogate method |
The gas-liquid damper is the main element in depreciation system of the aircraft landing gear. In this damper, the hydraulic resistance force to the rod motion depends on the working fluid flow rate through the plunger throttle hole, which area is regulated by a pin. If the passage hole area changes, the hydraulic resistance force also changes. Based on formulated criteria for the depreciation quality (energy intensity and dynamic coefficient), the problem of optimizing the pin profile was solved. To describe the damper operation, a mathematical model validated according to the landing gear testing results was used. Geometric parameters of the pin profile are described using the piecewise linear approximation or the cubic spline. To solve the problem of multicriteria optimization, the objective function was used covering a wide range of the aircraft landing weights. The solution was found using numerical integration of the damper mathematical model equations and the global optimization surrogate model. Analysis of the obtained results showed the possibility of reducing the load on the aircraft landing gear and the airframe structure.
References
[1] Zhitomirskiy G.I. Konstruktsiya samoletov [Aircraft design]. Moscow, Mashinostroenie Publ., 2018. 416 p. (In Russ.).
[2] Kondrashov N.A. Proektirovanie ubirayushchikhsya shassi samoletov [Designing retractable aircraft landing gear]. Moscow, Innovatsionnoe mashinostroenie Publ., 1991. 221 p. (In Russ.).
[3] Belous A.A. Methods for calculating oil-pneumatic depreciation of aircraft landing gear. Trudy TsAGI, 1947, no. 622, pp. 1–104. (In Russ.).
[4] Krüger W. Design and simulation of semi-active landing gears for transport aircraft. Mech. Struct. Mach., 2002, vol. 30, no. 4, pp. 493–526, doi: https://doi.org/10.1081/SME-120015074
[5] Dmitriev V.M., Dmitrieva M.V. Rukovodstvo dlya konstruktorov po proektirovaniyu samoletov. T. 3. Kn. 6. Vyp. 1 [Handbook for designers on aircraft design. Т. 3. Vol. 6. Iss. 1]. Moscow, TsAGI Publ., 1979. 160 p. (In Russ.).
[6] Zagidulin A.R., Podruzhin E.G. Aircraft landing gear with electromagnetic damper. IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1019, art. 012069, doi: https://doi.org/10.1088/1757-899X/1019/1/012069
[7] Sivaprakasam S., Baskaran S. Formulation of seven degree of freedom state space model of aircraft with active landing gear. AIP Conf. Proc., 2022, vol. 2516, no. 1, art. 030002, doi: https://doi.org/10.1063/5.0108428
[8] Venkatesan C. Optimization of an oleo-pneumatic shock absorber of an aircraft during landing. J. Aircraft, 1977, vol. 14, no. 8, pp. 822–823, doi: https://doi.org/10.2514/3.44619
[9] Odinokov Yu.G. Raschet samoleta na prochnost [Calculation of aircraft for strength]. Moscow, Mashinostroenie Publ., 1973. 392 p. (In Russ.).
[10] Zaytsev V.N., Rudakov V.L. Konstruktsiya i prochnost samoletov [Design and strength of aircraft]. Kiev, Vishcha shkola Publ., 1978. 487 p. (In Russ.).
[11] Shi F., Tanigawa N., Koganei R. et al. Optimum trade-off charts considering mass variation for the design of semi-active and passive shock absorbers for landing gear. J. Adv. Mech. Des. Syst. Manuf., 2016, vol. 10, no. 1, art. JAMDSM0005, doi: https://doi.org/10.1299/jamdsm.2016jamdsm0005
[12] Shi F. Multi-objective optimization of passive shock absorber for landing gear. Am. J. Mech. Eng., 2019, vol. 7, no. 2, pp. 79–86, doi: https://doi.org/10.12691/ajme-7-2-4
[13] Shi F., Dean W.I.A., Suyama T. Single-objective optimization of passive shock absorber for landing gear. Am. J. Mech. Eng., 2019, vol. 7, no. 3, pp. 107–115, doi: https://doi.org/10.12691/ajme-7-3-1
[14] Stachiw T., Khouli F., Langlois R.G. et al. Landing gear mechanical network synthesis for improving comfort at landing considering aircraft flexibility. J. Aircraft, 2021, vol. 58, no. 6, pp. 1–29, doi: https://doi.org/10.2514/1.C035921
[15] Himmelblau D.M. Applied nonlinear programming. McGraw-Hill, 1972. 498 p. (Russ. ed.: Prikladnoe nelineynoe programmirovanie. Moscow, Mir Publ., 1975. 534 p.)
[16] Nikitin E.A., Belkin A.E. Simulation of pilot testing of passenger aircraft landing gear legs. MIKMUS-2022. Moscow, 2022, pp. 137–144. (In Russ.).
[17] Kruchinin M.M., Kuzmin D.A. Helicopter chassis drop tests mathematical modeling. Trudy MAI, 2017, no. 92. URL: https://trudymai.ru/published.php?ID=77093 (in Russ.).
[18] Podruzhin E.G., Zagidulin A.R., Shinkarev D.A. Drop testing simulation of the mainline aircraft landing gear. Vestnik MAI [Aerospace MAI Journal], 2021, vol. 28, no. 4, pp. 106–117, doi: https://doi.org/10.34759/vst-2021-4-106-117 (in Russ.).
[19] Geradin M., Cardona A. Flexible multibody dynamics. Wiley, 2001. 344 p.
[20] Biderman V.L., ed. Avtomobilnye shiny [Car tyres]. Moscow, Goskhimizdat Publ., 1963. 383 p. (In Russ.).
[21] Clover C.L., Bernard J.E. Longitudinal tire dynamics. Veh. Syst. Dyn., 1998, vol. 29, no. 4, pp. 231–259, doi: https://doi.org/10.1080/00423119808969374
[22] de Boor C. A practical guide to splines. Springer, 1978. 392 p.
[23] Aviatsionnyye pravila. Ch. 25. Normy letnoy godnosti samoletov transportnoy kategorii. [Aviation Rules. Part 25. Airworthiness standards for transport category aircraft]. Mezhgosudarstvennyy aviatsionnyy komitet publ., 2009. 290 p.
[24] Zhuravlev V.F. Osnovy teoreticheskoy mekhaniki [Fundamentals of theoretic mechanics]. Moscow, Fizmatlit Publ., 2008. 304 p. (In Russ.).
[25] Jiang P., Zhou Q., Shao X. Surrogate model-based engineering design and optimization. Springer, 2020. 240 p.
[26] Gutmann H.-M. A radial basis function method for global optimization. J. Glob. Optim., 2001, vol. 19, no. 3, pp. 201–227, doi: https://doi.org/10.1023/A:1011255519438