Numerical simulation of the mechanism motion dynamics in the incompressible medium flow using the vortex loop method
Authors: Shcheglov G.A., Dergachev S.A. | Published: 25.12.2023 |
Published in issue: #1(766)/2024 | |
Category: Mechanics | Chapter: Theoretical Mechanics, Machine Dynamics | |
Keywords: mechanism dynamics, four-link mechanism, computational fluid dynamics, vortex loop method, incompressible medium, spatial flow around bodies |
The urgent problem of developing new software package designed to simulate the processes of interaction between a mechanism or its elements and the incompressible medium flow was solved. In this complex, the open source Project Chrono software program was used to calculate the mechanism dynamics, and the VM3D program implementing the meshless Lagrangian method of vortex loops was introduced to calculate the flow around the body and the unsteady aerohydrodynamic loads. An algorithm for solving the related structure problem and flow interaction was proposed. The software package operation was demonstrated using the example of a device mechanism for converting the renewable energy, which could be used in the context of designing small wind and hydroelectric power plants. The paper shows that the crank is capable of damped oscillations or autorotation depending on the mechanism parameters and the oncoming flow. The power range that could be obtained in the stable rotation mode of the output link was found. Data obtained could be used to design small wind and hydroelectric power plants.
References
[1] Bungartz H.-J., Schäfer M., ed. Fluid-structure interaction. Modelling, simulation, optimization. Springer, 2006. 394 p.
[2] Morozov V.I., Ponomarev A.T., Rysev O.V. Matematicheskoe modelirovanie slozhnykh aerouprugikh system [Mathematical modeling of complex aeroelastic systems]. Moscow, Fizmatlit Publ., 1995. 736 p. (In Russ.).
[3] Co-simulation with Hexagon CAE solutions. www.cradle-cfd.com: website. URL: https://www.cradle-cfd.com/product/msc.html (accessed: 19.06.2023).
[4] Solids4foam. веб-сайт. URL: https://www.solids4foam.com/ (accessed: 23.12.2023).
[5] Marchevsky I., Sokol K., Ryatina E.et al. The VM2D open source code for two-dimensional incompressible flow simulation by using fully Lagrangian vortex particle methods. Axioms, 2023, vol. 12, no. 3, art. 248, doi: https://doi.org/10.3390/axioms12030248
[6] Andronov P.R., Dosaev M.Z., Dynnikova G.Y. et al. Modeling of oscillating wind turbine. J. Mach. Manuf. Reliab., 2009, no. 38, no. 4, pp. 383–387, doi: https://doi.org/10.3103/S1052618809040153
[7] Tushev O.N., Shcheglov G.A. Numerical simulation of air launch aeroelasticity with random variation of aerodynamic loading parameters. Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Mashinostr. [Herald of the Bauman Moscow State Tech. Univ., Mechan. Eng.], 2015, no. 1, pp. 22–33, doi: https://doi.org/10.18698/0236-3941-2015-1-22-34 (in Russ.).
[8] Dergachev S.A., Marchevsky I.K., Shcheglov G.A. Flow simulation around 3D bodies by using Lagrangian vortex loops method with boundary condition satisfaction with respect to tangential velocity components. Aerosp. Sci. Technol., 2019, vol. 94, art. 105374, doi: https://doi.org/10.1016/j.ast.2019.105374
[9] Marchevskiy I.K., Shcheglov G.A., Dergachev S.A. VM3D — programmnyy kompleks dlya modelirovaniya prostranstvennykh techeniy neszhimaemoy sredy vikhrevymi metodami [VM3D — software package for modelling spatial flows of incompressible medium by vortex methods]. Svid. o gos. reg. prog. dlya EVM 2022660838 [Software reg. certificate 2022660838]. Reg. 10.06.2022. (In Russ.).
[10] Tasora A., Serban R., Mazhar H. et al. Chrono: an open source multi-physics dynamics engine. In: HPCSE 2015. Springer, 2015, pp. 19–49, doi: https://doi.org/10.1007/978-3-319-40361-8_2
[11] Wei Z., Edge B.L., Dalrymple R.A. et al. Modeling of wave energy converters by GPUSPH and Project Chrono. Ocean Eng., 2019, vol. 183, pp. 332–349, doi: https://doi.org/10.1016/j.oceaneng.2019.04.029
[12] Martínez-Estévez I., Domínguez J.M., Tagliafierro B. et al. Coupling of an SPH-based solver with a multiphysics library. Comput. Phys. Commun., 2023, vol. 283, art. 108581, doi: https://doi.org/10.1016/j.cpc.2022.108581
[13] Strekalov S.D., Misharev G.M., Strekalova L.P. et al. Ustroystvo dlya preobrazovaniya vozobnovlyaemoy energii [Renewable energy converter]. Patent RU 2293212. Appl. 04.08.2005, publ. 10.02.2007. (In Russ.).
[14] Klimina L., Dosaev M., Selyutskiy Y. Asymptotic analysis of the mathematical model of a wind-powered vehicle. Appl. Math. Model., 2017, vol. 46, pp. 691–697, doi: https://doi.org/10.1016/j.apm.2016.06.022
[15] Garbuz M., Klimina L., Samsonov V. Wind driven plantigrade machine capable of moving against the flow. Appl. Math. Model., 2022, vol. 110, pp. 17–27, doi: https://doi.org/10.1016/j.apm.2022.05.035
[16] ProjectChrono. An open source multi-physics simulation engine. projectchrono.org: website. URL:https://projectchrono.org/ (accessed: 19.06.2023)
[17] Andronov P.P., Guvepnyuk C.B., Dynnikova G.Ya. Vikhrevye metody rascheta nestatsionarnykh gidrodinamicheskikh nagruzok [Vortex methods of calculation of unsteady hydrodynamic loads]. Moscow, Izd-vo MGU Publ., 2006. 184 p. (In Russ.).
[18] Marchevsky I.K., Shcheglov G.A. Double layer potential density reconstruction procedure for 3D vortex methods. In: Numerical methods for flows. Springer, 2020, pp. 287–295, doi: https://doi.org/10.1007/978-3-030-30705-9_25