Dynamic loads and durability of the rolling bearing massive separators
Authors: Klebanov Y.M., Urlapkin A.V., Adeyanov I.E., Pugacheva T.M., Klebanov Ya.M., Brazhnikova A.M. | Published: 09.11.2024 |
Published in issue: #11(776)/2024 | |
Category: Mechanics | Chapter: Theoretical Mechanics, Machine Dynamics | |
Keywords: rolling bearing separator, dynamic loads, massive separator durability, dynamics numerical models, high cycle fatigue, non-metallic inclusions |
The paper considers the causes of defects in the rolling bearing separators of the gas turbine engine supports. It proposes a method for determining service life of the rolling bearing massive separators exposed to high-cycle fatigue. The method includes simulating motion dynamics of the bearing components, computing alteration in the dynamic stress fields and assessing the separator fatigue strength. The bearing components’ motion in dynamic models is described by differential equations with six degrees of freedom, and the components’ interaction - by the contact hydrodynamics equations. Results of computing the ball and roller bearing separators designed for the aerospace application made it possible to analyze the influence on the separator high-cycle fatigue of the bearing operation conditions, their internal geometric parameters and a defect in the form of the solid non-metallic inclusion being the main source of the fatigue cracks. The paper substantiates expediency of monitoring contamination of the separator workpieces made of 40KhNМА-Sh steel with the non-metallic inclusions.
EDN: LXYPEU, https://elibrary/lxypeu
References
[1] Aherwar A., Bajpai R., Khalid S. Investigation to failure analysis of rolling element bearing with various defects. IJMET, 2012, vol. 3, no. 2, pp. 138–149.
[2] Kumbhar S.G., Sudhagar P.E., Desavale R.G. An overview of dynamic modeling of rolling-element bearings. Noise Vib. Worldw., 2021, vol. 52, no. 1–2, pp. 3–18, doi: https://doi.org/10.1177/0957456520948279
[3] Klebanov Ya.M., Polyakov K.A., Petrov V.R. et al. Slip in roller bearings under hydrodynamic contact friction. Trenie i iznos, 2022, vol. 43, no. 1, pp. 105–113, doi: https://doi.org/10.32864/0202-4977-2022-43-1-105-113 (in Russ.). (Eng. version: J. Frict. Wear, 2022, vol. 43, no. 1, pp. 74–79, doi: https://doi.org/10.3103/S1068366622010068)
[4] Zhang R., Guo L., Zong Z. et al. Dynamic modeling and analysis of rolling bearings with rolling element defect considering time-varying impact force. J. Sound Vib., 2023, vol. 562, no. 99, art. 117820, doi: https://doi.org/10.1016/j.jsv.2023.117820
[5] Gupta P.K. Modeling of instabilities induced by cage clearances in cylindrical roller bearings. Tribol. Trans., 1991, vol. 34, no. 1, pp. 1–8, doi: https://doi.org/10.1080/10402009108982002
[6] Ghaisas N., Wassgren C.R., Sadeghi F. Cage instabilities in cylindrical roller bearings. J. Tribol., 2004, vol. 126, no. 4, pp. 681–689, doi: https://doi.org/10.1115/1.1792674
[7] Bovet C., Zamponi L. An approach for predicting the internal behaviour of ball bearings under high moment load. Mech. Mach. Theory, 2016, vol. 101, pp. 1–22, doi: https://doi.org/10.1016/j.mechmachtheory.2016.03.002
[8] Cui Y., Deng S., Zhang W. et al. The impact of roller dynamic unbalance of high-speed cylindrical roller bearing on the cage nonlinear dynamic characteristics. Mech. Mach. Theory, 2017, vol. 118, pp. 65–83, doi: https://doi.org/10.1016/j.mechmachtheory.2017.08.001
[9] Sakaguchi T., Harada K. Dynamic analysis of cage behavior in a tapered roller bearing. J. Tribol., 2006, vol. 128, no. 3, pp. 604–611, doi: https://doi.org/10.1115/1.2197527
[10] LiuY., Wang W., Liang H. et al. Nonlinear dynamic behavior of angular contact ball bearings under microgravity and gravity. Int. J. Mech. Sci., 2020, vol. 183, art. 105782, doi: https://doi.org/10.1016/j.ijmecsci.2020.105782
[11] Kingsbury E., Walker R. Motions of an unstable retainer in an instrument ball bearing. J. Tribol., 1994, vol. 116, no. 2, pp. 202–208, doi: https://doi.org/10.1115/1.2927197
[12] Suzuki D., Takahashi K., Itoigawa F. et al. Study on cage wear of railway traction motor bearings based on analysis of rolling element motion. Machines, 2023, vol. 11, no. 6, art. 594, doi: https://doi.org/10.3390/machines11060594
[13] Ye Z., Wang L. Effect of external loads on cage stability of high-speed ball bearings. Proc. Inst. Mech. Eng. J, 2015, vol. 229, no. 11, pp. 1300–1318, doi: https://doi.org/10.1177/1350650115577402
[14] Niu L., Cao H., He Z. et al. An investigation on the occurrence of stable cage whirl motions in ball bearings based on dynamic simulations. Tribol. Int., 2016, vol. 103, pp. 12–24, doi: https://doi.org/10.1016/j.triboint.2016.06.026
[15] Klebanov Ya.M., Murashkin V.V., Polyakov K.A. et al. Dynamic loading in high-speed ball bearings. Vestnik mashinostroeniya, 2017, no. 11, pp. 3–9. (In Russ.). (Eng. version: Russ. Engin. Res., 2018, vol. 38, no. 2, pp. 65–71, doi: https://doi.org/10.3103/S1068798X18020107
[16] Balyakin V.B., Pilla K.K. Metodiki rascheta dolgovechnosti aviatsionnykh podshipnikov [Methods of calculation of aircraft bearing durability]. Samara, Izd-vo Samarskogo un-ta Publ., 2023. 76 p. (In Russ.).
[17] Sakaguchi T., Ueno K. Dynamic analysis of cage behavior in a cylindrical roller bearing. NTN Tech. Rev., 2004, no. 71, pp. 8–17. (In Russ.).
[18] Harada K., Sakaguchi T. Dynamic analysis of a high-load capacity tapered roller bearing. NTN Tech. Rev., 2005, no. 73, pp. 20–29.
[19] Sopanen J., Mikkola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 1: Theory. Proc. Inst. Mech. Eng. K, 2003, vol. 217, no. 4, pp. 201–211, doi: https://doi.org/10.1243/14644190360713551
[20] Sopanen J., Mikkola A. Dynamic model of a deep-groove ball bearing including localized and distributed defects. Part 2: Implementation and results. Proc. Inst. Mech. Eng. K, 2003, vol. 217, no. 4, pp. 211–221, doi: https://doi.org/10.1243/14644190360713560
[21] Yang Z.Z., Wu J.G., Qin B. et al. ADAMS dynamics simulating and analysis of vibration signal for deep-groove ball bearings. Appl. Mech. Mater., 2013, vol. 312, pp. 254–257, doi: https://doi.org/10.4028/www.scientific.net/AMM.312.254
[22] Teutsch R., Sauer B. An alternative slicing technique to consider pressure concentrations in non-Hertzian line contacts. J. Tribol., 2004, vol. 126, no. 3, pp. 436–442, doi: https://doi.org/10.1115/1.1739244
[23] Klebanov Ya.M., Murashkin V.V., Petrov N.I. et al. The influence of operating conditions on the performance of gas-turbine engine bearings. Vestnik mashinostroeniya, 2019, no. 11, pp. 36–41. (In Russ.).
[24] Stacke L.E., Fritzson D., Nordling P. BEAST — a rolling bearing simulation tool. Proc. Inst. Mech. Eng. K, 1999, vol. 213, no. 2, pp. 63–71, doi: https://doi.org/10.1243/1464419991544063
[25] Houpert L. CAGEDYN: a contribution to roller bearing dynamic calculations. Part I: Basic tribology concepts. Tribol. Trans., 2009, vol. 53, no. 1, pp. 1–9, doi: https://doi.org/10.1080/10402000903132093
[26] Xu F., Ding N., Li N. et al. A review of bearing failure modes, mechanisms and causes. Eng. Fail. Anal., 2023, vol. 152, art. 107518, doi: https://doi.org/10.1016/j.engfailanal.2023.107518
[27] Shi Z., Liu J., Li H. et al. Dynamic simulation of a planet roller bearing considering the cage bridge crack. Eng. Fail. Anal., 2022, vol. 131, art. 105849, doi: https://doi.org/10.1016/j.engfailanal.2021.105849
[28] Myshkina A.V., Akulova S.N., Krivonosova E.A. et al. The influence of plasma treatment regimes on the distribution of nonmetallic inclusions in steel. Vestnik PNIPU. Mashinostroenie, materialovedenie [Bulletin PNRPU. Mechanical Engineering, Materials Science], 2017, vol. 19, no. 4, pp. 154–171, doi: https://doi.org/10.15593/2224-9877/2017.4.11 (in Russ.).
[29] Jirandehi A.P., Khonsari M.M. General quantification of fatigue damage with provision for microstructure: a review. Fatigue. Fract. Eng. Mater. Struct., 2021, vol. 44, no. 8, pp. 1973–1999, doi: https://doi.org/10.1111/ffe.13515
[30] Kogaev V.P., Makhutov N.A., Gusenkov A.P. Raschet detaley mashin i konstruktsiy na prochnost i dolgovechnost [Calculation of machine parts and structures for strength and durability]. Moscow, Mashinostroenie Publ., 1985. 224 p. (In Russ.).
[31] Klebanov Ya.M., Polyakov K.A., Brazhnikova A.M. Dynamics of the double-row tapered roller bearings. Izvestiya vysshikh uchebnykh zavedeniy. Mashinostroenie [BMSTU Journal of Mechanical Engineering], 2024, no. 2, pp. 1–16. (In Russ.).
[32] Muraki M., Kimura Y. Traction characteristics of lubricating oils. A simplified thermal theory of traction with a non–linear viscoelastic model. JSLEJ, 1983, vol. 28, no. 10, pp. 753–760.
[33] Muraki M. Molecular structure of synthetic hydrocarbon oils and their rheological properties governing traction characteristics. Tribol. Int., 1987, vol. 20, no. 6, pp. 347–354, doi: https://doi.org/10.1016/0301-679X(87)90063-6
[34] Klebanov I.M., Moskalik A.D., Brazhnikova A.M. Critical sliding in rolling bearings under hydrodynamic friction conditions. J. Frict. Wear, 2022, vol. 43, no. 4, pp. 255–261, doi: https://doi.org/10.3103/S1068366622040067
[35] Balyakin V.B., Zhilnikov E.P., Samsonov V.N. Teoriya i proektirovanie opor rotorov aviatsionnykh GTD [Theory and design of rotor supports for aircraft GTE rotors]. Samara, Izd-vo SGAU Publ., 2007. 254 p. (In Russ.).
[36] GOST 25.101–83. Raschety i ispytaniya na prochnost. Metody skhematizatsii sluchaynykh protsessov nagruzheniya elementov mashin i konstruktsiy i statisticheskogo predstavleniya rezultatov [State standard GOST 25.101–83. Strength calculation and testing. Representation of random loading of machine elements and structures and statistical evaluation of results]. Moscow, Izd-vo standartov Publ., 1983. 50 p. (In Russ.).
[37] Berezin I.Ya., Chernyavskiy O.F. Ustalostnoe razrushenie metallov i raschety na prochnost i dolgovechnost pri peremennykh napryazheniyakh [Fatigue failure of metals and calculations of strength and durability under alternating stresses]. Chelyabinsk, YuUrGU Publ., 2003. 76 p. (In Russ.).
[38] Shlugera M.A. Galvanicheskie pokrytiya v mashinostroenii. T. 1 [Galvanic coatings in mechanical engineering. Vol. 1]. Moscow, Mashinostroenie, 1985. 240 p. (In Russ.).
[39] Spektor A.G., Zelbet B.M., Kiseleva S.A. Struktura i svoystva podshipnikovykh staley [Structure and properties of bearing steels]. Moscow, Metallurgiya Publ., 1980. 264 p. (In Russ.).
[40] Vincent A., Fougeres R., Lormand G. et al. A physically based endurance limit model for through hardened and surface hardened bearing steels. Bearing Steel Technology, 2002, pp. 459–473, doi: https://doi.org/10.1520/STP10873S