Computational study of the hovercraft hydraulic transmission
Authors: Sosnovsky N.G., Van Hoa Nguyen | Published: 08.04.2023 |
Published in issue: #4(757)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: hovercraft, hydraulic transmission, fan efficiency, pump controller, system energy efficiency |
Implementation of the vehicles optimal operating modes and improvement of their energy efficiency appears to be an urgent task. The paper considers a hovercraft with the hydraulic transmission. Combined mathematical model of hydraulic transmission and fan supplying air to the air cushion section was developed. Automatic control of the pump swashplate inclination angle with the vessel moving upon different support surfaces was analyzed in the MATLAB/Simulink environment in terms of increasing efficiency of the fan and system operation. The system calculation scheme is presented, and acceptable transient characteristics were obtained. The developed mathematical model makes it possible to select and assess optimal frequency of the hydraulic motor shaft rotation with the vessel moving upon different surfaces, analyze and improve the system energy efficiency. Using the proposed transmission control unit in a hovercraft allows maintaining the fan efficiency and the required vessel height above the supporting surface.
References
[1] Kachanov I.V., Ledyan Yu.P., Shcherbakova M.K. Konstruktsiya bystrokhodnykh sudov. Ch. 3. Suda na vozdushnoy podushke [Design of fast ships. Ч. 3. Hovercrafts]. Minsk, BNTU Publ., 2015. (In Russ.).
[2] Brusov V.A., Merzlikin Yu.Yu., Menshikov A.S. Development of a control system for the hydraulic system parameters of a vehicle with a combined chassis on an air cushion. Trudy NAMI, 2021, no. 1, pp. 35–46, doi: https://doi.org/10.51187/0135-3152-2021-1-35-46 (in Russ.).
[3] Amyot J.R., ed. Hovercraft technology, economics and applications. Elsevier, 2013. 787 p.
[4] Sosnovskiy N.G., Brusov V.A., Nguen V.Kh. Simulation of a hydraulic drive with volumetric regulation of an amphibious vehicle. Inzhenernyy zhurnal: Nauka i innovatsii [Engineering Journal: Science and Innovation], 2021, no. 11, doi: https://doi.org/10.18698/2308-6033-2021-11-2127 (in Russ.).
[5] Chuvashev S.N., Yakimov N.M., Chuvasheva E.S. et al. Computer simulation of energy saving and environmentally friendly amphibious hovercrafts for arctics and Far East. Alternativnaya energetika i ekologiya [Alternative Energy and Ecology], 2015, no. 13–14, pp. 117–138, doi: https://doi.org/10.15518/isjaee.2015.13-14.013 (in Russ.).
[6] Ovchinnikov V.V., Yakutov A.V. Sudno na vozdushnoy podushke s gusenichnym dvizhitelem [Hovercraft with caterpillar engine]. Patent RU 125946. Appl. 09.10.2012., publ. 20.03.2013. (In Russ.).
[7] Kim J.H., Jeon C.S., Hong Y.S. Constant pressure control of a swash plate type axial piston pump by varying both volumetric displacement and shaft speed. Int. J. Precis. Eng. Manuf., 2015, vol. 16, no. 11, pp. 2395–2401, doi: https://doi.org/10.1007/s12541-015-0309-5
[8] Pilgunov V.N. A computational model of hydraulic volume displacement drive. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2014, no. 7. URL: http://engineering-science.ru/doc/719739.html (in Russ.).
[9] Nguen Van Khoa, Sosnovskiy N.G. International Scientific Conference “Fundamental and Applied Problems of Mechanics” (FAPM-2021). Moscow, 7–10 December, 2021. The materials of the conference. In two parts. Part 2. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 6, doi: http://dx.doi.org/10.18698/2308-6033-2022-6-2190 (in Russ.).
[10] Nikitin O.F. Machine regulation volume hydraulic drive with reciprocating motion of hydraulic motors. FPM, 2015, pp. 593–595, doi: https://doi.org/10.1109/FPM.2015.7337185
[11] Demeshko G.F. Proektirovanie sudov. Amfibiynye suda na vozdushnoy podushke. Kn. 2 [Vessel design. Amphibious hovercrafts. P. 2]. Sankt-Petersburg, Sudostroenie Publ., 1992. 329 p. (In Russ.).
[12] Naumov V.N., Brusov V.A., Dolgopolov A.A. et al. Improving cross-country ability, run smoothness and controllability of aircrafts and vehicles with controllable combined air-cushion undercarriage. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2014, no. 7, doi: http://dx.doi.org/10.18698/2308-6033-2014-7-1302 (in Russ.).
[13] Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and adjustment of hydro- and pneumosystems]. Moscow, Mashinostroenie Publ., 1987. 464 p. (In Russ.).
[14] Hossain A., Rahman A., Mohiuddin A.K.M. Cushion pressure control system for an intelligent air-cushion trackvehicle. J. Mech. Sci. Technol., 2011, vol. 25, no. 4, pp. 1035–1041, doi: https://doi.org/10.1007/s12206-011-0216-3
[15] Brusilovskiy I.V. Aerodinamicheskie skhemy i kharakteristiki osevykh ventilyatorov TsAGI [Aerodynamics schemes and characteristics of TsAGI axial fans]. Moscow, Nedra Publ., 1978. 198 p. (In Russ.).
[16] Klichko V.V., Dyakova T.A., Zaytsev O.A. et al. New flexible skirt design for amphibious ACV. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra [Transactions of the Krylov State Research Centre], 2020, no. 1, pp. 85–94, doi: https://doi.org/10.24937/2542-2324-2020-1-391-85-94 (in Russ.).
[17] Kachanov I.V., Ledyan Yu.P., Shcherbakova M.K. Konstruktsiya bystrokhodnykh sudov. Ch. 3. Suda na vozdushnoy podushke [Design of fast ships. Ч. 3. Hovercrafts]. Minsk, BNTU Publ., 2015. (In Russ.).
[18] Brusov V.A., Merzlikin Yu.Yu., Menshikov A.S. Development of a control system for the hydraulic system parameters of a vehicle with a combined chassis on an air cushion. Trudy NAMI, 2021, no. 1, pp. 35–46, doi: https://doi.org/10.51187/0135-3152-2021-1-35-46 (in Russ.).
[19] Amyot J.R., ed. Hovercraft technology, economics and applications. Elsevier, 2013. 787 p.
[20] Sosnovskiy N.G., Brusov V.A., Nguen V.Kh. Simulation of a hydraulic drive with volumetric regulation of an amphibious vehicle. Inzhenernyy zhurnal: Nauka i innovatsii [Engineering Journal: Science and Innovation], 2021, no. 11, doi: https://doi.org/10.18698/2308-6033-2021-11-2127 (in Russ.).
[21] Chuvashev S.N., Yakimov N.M., Chuvasheva E.S. et al. Computer simulation of energy saving and environmentally friendly amphibious hovercrafts for arctics and Far East. Alternativnaya energetika i ekologiya [Alternative Energy and Ecology], 2015, no. 13–14, pp. 117–138, doi: https://doi.org/10.15518/isjaee.2015.13-14.013 (in Russ.).
[22] Ovchinnikov V.V., Yakutov A.V. Sudno na vozdushnoy podushke s gusenichnym dvizhitelem [Hovercraft with caterpillar engine]. Patent RU 125946. Appl. 09.10.2012., publ. 20.03.2013. (In Russ.).
[23] Kim J.H., Jeon C.S., Hong Y.S. Constant pressure control of a swash plate type axial piston pump by varying both volumetric displacement and shaft speed. Int. J. Precis. Eng. Manuf., 2015, vol. 16, no. 11, pp. 2395–2401, doi: https://doi.org/10.1007/s12541-015-0309-5
[24] Pilgunov V.N. A computational model of hydraulic volume displacement drive. Nauka i obrazovanie: nauchnoe izdanie [Science and Education: Scientific Publication], 2014, no. 7. URL: http://engineering-science.ru/doc/719739.html (in Russ.).
[25] Nguen Van Khoa, Sosnovskiy N.G. International Scientific Conference “Fundamental and Applied Problems of Mechanics” (FAPM-2021). Moscow, 7–10 December, 2021. The materials of the conference. In two parts. Part 2. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2022, no. 6, doi: http://dx.doi.org/10.18698/2308-6033-2022-6-2190 (in Russ.).
[26] Nikitin O.F. Machine regulation volume hydraulic drive with reciprocating motion of hydraulic motors. FPM, 2015, pp. 593–595, doi: https://doi.org/10.1109/FPM.2015.7337185
[27] Demeshko G.F. Proektirovanie sudov. Amfibiynye suda na vozdushnoy podushke. Kn. 2 [Vessel design. Amphibious hovercrafts. P. 2]. Sankt-Petersburg, Sudostroenie Publ., 1992. 329 p. (In Russ.).
[28] Naumov V.N., Brusov V.A., Dolgopolov A.A. et al. Improving cross-country ability, run smoothness and controllability of aircrafts and vehicles with controllable combined air-cushion undercarriage. Inzhenernyy zhurnal: nauka i innovatsii [Engineering Journal: Science and Innovation], 2014, no. 7, doi: http://dx.doi.org/10.18698/2308-6033-2014-7-1302 (in Russ.).
[29] Popov D.N. Dinamika i regulirovanie gidro- i pnevmosistem [Dynamics and adjustment of hydro- and pneumosystems]. Moscow, Mashinostroenie Publ., 1987. 464 p. (In Russ.).
[30] Hossain A., Rahman A., Mohiuddin A.K.M. Cushion pressure control system for an intelligent air-cushion trackvehicle. J. Mech. Sci. Technol., 2011, vol. 25, no. 4, pp. 1035–1041, doi: https://doi.org/10.1007/s12206-011-0216-3
[31] Brusilovskiy I.V. Aerodinamicheskie skhemy i kharakteristiki osevykh ventilyatorov TsAGI [Aerodynamics schemes and characteristics of TsAGI axial fans]. Moscow, Nedra Publ., 1978. 198 p. (In Russ.).
[32] Klichko V.V., Dyakova T.A., Zaytsev O.A. et al. New flexible skirt design for amphibious ACV. Trudy Krylovskogo gosudarstvennogo nauchnogo tsentra [Transactions of the Krylov State Research Centre], 2020, no. 1, pp. 85–94, doi: https://doi.org/10.24937/2542-2324-2020-1-391-85-94 (in Russ.).