Features of improving the reliability and efficiency of gas separators of submersible installations of electric centrifugal pumps for the reservoir fluid production
Authors: Trulev A.V., Timushev S.F., Lomakin V.O., Klipov A.V. | Published: 05.05.2023 |
Published in issue: #5(758)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: electric centrifugal pumps, design schemes of gas separators, gas-liquid mixture, gas separation efficiency, reservoir fluid |
In oil producing wells with high gas content, an increase in the efficiency of centrifugal pumps is achieved by equipping them with centrifugal gas separators, in which, before entering the pump intake, most of the free gas is taken from the pumped fluid and discharged into the annulus of the well. The efficiency of a centrifugal gas separator significantly depends on the size of the dispersity of the gas-liquid structure of the pumped fluid, on the diameters of gas bubbles, the water cut of the formation fluid, the presence of surfactants, and the pressure at the inlet and outlet of the pump. In the article, based on the analysis of the structural diagrams of the power part of gas separators of various manufacturers, the analysis of the gas-liquid mixture flow features in the separation chamber and the outlet device, recommendations are made for optimizing the separation chamber length and the gas separator head outlet design. Recommendations are proposed for changing the flow path to increase the efficiency of gas separation and reliability of operation. Explanations of the expediency of new design solutions based on empirical formulas and numerical simulations are proposed. It is shown what the information is most important and how it can be obtained in bench tests.
References
[1] Vakhitova R.I., Saracheva D.A., Urazakov D.R. et al. Povyshenie effektivnosti raboty pogruzhnykh elektrotsentrobezhnykh ustanovok pri dobyche nefti s vysokim gazosoderzhaniem [Improving efficiency of submersible electric centrifugal units in oil production with high gas content]. Almetyevsk, AGNI Publ., 2019. 104 p. (In Russ.).
[2] Yakimov S.B., Shportko A.A., Shalagin Yu.Yu. Ways of improving gas separators reliability used to protect electric centrifugal pumps in the deposits of (ESP) PJSC "NK "Rosneft". Oborudovanie i tekhnologii dlya neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Complex], 2017, no. 1, pp. 33–39. (In Russ.).
[3] Yakimov S.B. Potential optimization of ESP wear resistance class at Orenburgneft JSC fields. Nauchno-tekhnicheskiy vestnik OAO "NK "Rosneft", 2015, no. 3, pp. 85–92. (In Russ.).
[4] Dengaev A.V. Povyshenie effektivnosti ekspluatatsii skvazhin pogruzhnymi tsentrobezhnymi nasosami pri otkachke gazozhidkostnykh smesey. Diss. kand. tekh. nauk [Enhancement of well operation efficiency by submersible centrifugal pumps when pumping gas-liquid mixtures. Kand. tech. sci. diss.]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2005. 212 p. (In Russ.).
[5] Kutateladze S.S., Styrikovich M.A. Gidravlika gazozhidkostnykh system [Hydraulics of gas-liquid systems]. Moscow, Leningrad, Gosenergoizdat Publ., 1958. 231 p. (In Russ.).
[6] Tong L.S. Boiling heat transfer and two-phase flow. CRC Press, 1997. ? 572 p. (Russ. ed.: Teplootdacha pri kipenii i dvukhfaznoe techenie. Moscow, Mir Publ., 1968. 344 p.)
[7] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian vane pump installations for oil production and their application]. Perm, Press-Master Publ., 2007. 645 p. (In Russ.).
[8] Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh [Technology and technique of oil production by submersible pumps in complicated conditions]. Moscow, MAKS Press Publ., 2008. 309 p. (In Russ.).
[9] Petrov V.I., Chebaevskiy V.F. Kavitatsiya v vysokooborotnykh lopastnykh nasosakh [Cavitation in high-speed lobe pumps]. Moscow, Mashinostroenie Publ., 1982. 192 p. (In Russ.).
[10] Trulev A., Verbitsky V., Timushev S. et al. Electrical submersible centrifugal pump units of the new generation for the operation of marginal and inactive wells with a high content of free gas and mechanical impurities. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012041, doi: https://doi.org/10.1088/1757-899X/492/1/012041
[11] Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012036, doi: https://doi.org/10.1088/1757-899X/779/1/012036
[12] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Problems and ways to solve the development of heavy oil fields with complex geological conditions. Neft. Gaz. Novatsii, 2020, no. 2, pp. 55–60. (In Russ.).
[13] Trulev A.V., Loginov V.F., Gorbunov S.I. et al. Razrabotka i opytno-promyshlennoe vnedrenie pogruzhnykh UETsN kontseptualno novoy konstruktsii dlya ekspluatatsii malodebitnykh skvazhin s vysokim soderzhaniem svobodnogo gaza i mekhanicheskikh primesey [Development and test output introduction of ESP of conceptually new construction for exploitation of low-debit well with high content free gas and mechanical impurities]. V: Sbornik rabot laureatov Mezhdunarodnogo konkursa nauchno tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie toplivno-energeticheskoy i dobyvayushchey otrasli [In: Collection of works by laureates of the international contest of scientific, technical and innovative developments aimed at the development of fuel and energy and extractive indust]. Moscow, Format Publ., 2019, pp. 307–310. (In Russ.).
[14] Lyapkov P.D. Movement of a spherical particle relative to the liquid in the inter-blade channel of a centrifugal pump impeller. Trudy MINKh i GP, 1977, no. 129, pp. 3–36. (In Russ.).
[15] Isaev G.A., Kalan V.A., Petrov V.I. [Design development of a research stand for testing gas separators for submersible pump units for oil production]. SINT 2009. Razrabotka, proizvodstvo i ekspluatatsiya, turbo-elektronasosnykh agregatov i sistem na ikh osnove. Tr. V Mezhd. nauch.-tekh. konf. [Development, Manufacture and Exploitation of Turbo-Electric Pumping Units and Systems. Proc. V Int. Sci.-Tech. Conf.]. Voronezh, 2009, pp. 136–147. (In Russ.).
[16] Isaev G.A., Kalan V.A., Petrov V.I., Trulev A.V. Stend gidravlicheskikh ispytaniy gazoseparatorov nasosnykh ustanovok dlya podachi plastovoy zhidkosti [Hydraulic test bench for gas separators of pump units for supply of formation fluid]. Patent RU 2425254. Appl. 18.09.2009, publ. 27.07.2011. (In Russ.).
[17] Trulev A.V., Sitnikov V.I. Stend dlya ispytaniya gazoseparatorov k pogruzhnym elektronasosnym agregatam [Test bench for testing gas separators to submersible electrically driven pump units]. Patent RU 2588332. Appl. 21.07.2015, publ. 27.06.2016. (In Russ.).
[18] Trulev A.V., Leonov V.V. Sposob ispytaniy gazoseparatorov na gazozhidkostnykh smesyakh i stend dlya ego osushchestvleniya [Method of gas-separators testing on gas-liquid mixtures and bench for its implementation]. Patent RU 2647175. Appl. 21.06.2017, publ. 14.03.2018. (In Russ.).
[19] Trulev A.V., Timushev S.F., Shmidt E.M. Features of ESP gas separator bench tests for oil production purposes. Neft. Gaz. Novatsii, 2020, no. 7, pp. 59–66. (In Russ.).
[20] Trulev A.V., Timushev S.F., Lomakin V.O. Conceptual features of the method of bench testing of gas separators for submersible electric centrifugal pumps for oil production. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2020, no. 2, pp. 11–27. (In Russ.).
[21] Ovsyannikov B.T., Borovsky B.I. Theory and calculation of power units for liquid rocket engines. Moscow, Mashinostroenie Publ., 1982. 376 p. (In Russ.).