Improving flow path of the cyclone-type desenders using the multiphase coefficient of the discrete particles relative speed
Authors: Trulev A.V., Timushev S.F., Lomakin A.V., Klipov A.V. | Published: 03.07.2023 |
Published in issue: #7(760)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: cyclone-type desender, mechanical impurities, flow part, fixed screw, multiphase coefficient of the discrete particles relative speed, reservoir fluid |
In the oil producing wells with high content of mechanical impurities and free gas, efficiency of the electric centrifugal pump is increased by installing the cyclone-type desenders at its inlet. Desender protects the submersed pump from mechanical impurities entering it by separation and collecting them in a special container. At the same time, the problem of free gas bubbles enlargement is being solved to facilitate their separation into the annulus and thus reduce the free gas content at the pump inlet. Analysis was made of specifics of the formation fluid flow containing mechanical impurities and free gas in the flow path of a cyclone-type separator with the fixed screw. Expressions were derived to determine the dimensionless multiphase coefficient of the discrete particles relative separation rate and of the multiphase similarity criterion. They allow evaluating efficiency of the mechanical impurity separators and developing new highly efficient structures based on the previously created ones. Recommendations are provided for development of the new highly efficient structures.
References
[1] Drozdov A.N. Tekhnologiya i tekhnika dobychi nefti pogruzhnymi nasosami v oslozhnennykh usloviyakh [Technology and technique of oil production by submersible pumps in complicated conditions]. Moscow, MAKS Press Publ., 2008. 309 p. (In Russ.).
[2] Dengaev A.V. Povyshenie effektivnosti ekspluatatsii skvazhin pogruzhnymi tsentrobezhnymi nasosami pri otkachke gazozhidkostnykh smesey. Diss. kand. tekh. nauk [Enhancement of well operation efficiency by submersible centrifugal pumps when pumping gas-liquid mixtures. Kand. tech. sci. diss.]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2005. 212 p. (In Russ.).
[3] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian vane pump installations for oil production and their application]. Perm, Press-Master Publ., 2007. 645 p. (In Russ.).
[4] Vakhitova R.I., Saracheva D.A., Urazakov D.R. et al. Povyshenie effektivnosti raboty pogruzhnykh elektrotsentrobezhnykh ustanovok pri dobyche nefti s vysokim gazosoderzhaniem [Improving efficiency of submersible electric centrifugal units in oil production with high gas content]. Almetyevsk, AGNI Publ., 2019. 104 p. (In Russ.).
[5] Yakimov S.B., Shportko A.A., Shalagin Yu.Yu. Ways of improving gas separators reliability used to protect electric centrifugal pumps in the deposits of (ESP) PJSC "NK "Rosneft". Oborudovanie i tekhnologii dlya neftegazovogo kompleksa [Equipment and Technologies for Oil and Gas Complex], 2017, no. 1, pp. 33–39. (In Russ.).
[6] Yakimov S.B. Potential optimization of ESP wear resistance class at Orenburgneft JSC fields. Nauchno-tekhnicheskiy vestnik OAO "NK "Rosneft", 2015, no. 3, pp. 85–92. (In Russ.).
[7] Trulev A.V., Loginov V.F., Gorbunov S.I. et al. Razrabotka i opytno-promyshlennoe vnedrenie pogruzhnykh UETsN kontseptualno novoy konstruktsii dlya ekspluatatsii malodebitnykh skvazhin s vysokim soderzhaniem svobodnogo gaza i mekhanicheskikh primesey [Development and test output introduction of ESP of conceptually new construction for exploitation of low-debit well with high content free gas and mechanical impurities]. V: Sbornik rabot laureatov Mezhdunarodnogo konkursa nauchno tekhnicheskikh i innovatsionnykh razrabotok, napravlennykh na razvitie toplivno-energeticheskoy i dobyvayushchey otrasli [In: Collection of works by laureates of the international contest of scientific, technical and innovative developments aimed at the development of fuel and energy and extractive indust]. Moscow, Format Publ., 2019, pp. 307–310. (In Russ.).
[8] Trulev A., Verbitsky V., Timushev S. et al. Electrical submersible centrifugal pump units of the new generation for the operation of marginal and inactive wells with a high content of free gas and mechanical impurities. IOP Conf. Ser.: Mater. Sci. Eng., 2019, vol. 492, art. 012041, doi: https://doi.org/10.1088/1757-899X/492/1/012041
[9] Trulev A., Timushev S., Lomakin V. Conceptual features of improving the flow-through parts of gas separators of submersible electric pumps systems for the production of formation fluid in order to improve the separating properties, energy efficiency and reliability. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012036, doi: https://doi.org/10.1088/1757-899X/779/1/012036
[10] Trulev A.V., Timushev S.F., Shmidt E.M. Features of ESP gas separator bench tests for oil production purposes. Neft. Gaz. Novatsii, 2020, no. 7, pp. 59–66. (In Russ.).
[11] Trulev A.V., Timushev S.F., Lomakin V.O. Conceptual features of the method of bench testing of gas separators for submersible electric centrifugal pumps for oil production. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2020, no. 2, pp. 11–27. (In Russ.).
[12] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Problems and ways to solve the development of heavy oil fields with complex geological conditions. Neft. Gaz. Novatsii, 2020, no. 2, pp. 55–60. (In Russ.).
[13] Trulev A.V., Shmidt E.M. Bench tests methodological specifics of submersible electric centrifugal pumps gas separating installations for oil extraction. Vestnik MAI [Aerospace MAI Journal], 2021, vol. 28, no. 3, pp. 73–80, doi: https://doi.org/10.34759/vst-2021-2-73-80 (in Russ.).
[14] Lyapkov P.D. Movement of a spherical particle relative to the liquid in the inter-blade channel of a centrifugal pump impeller. Trudy MINKh i GP, 1977, no. 129, pp. 3–36. (In Russ.).
[15] Yakovlev A.A., Timushev S.F., Tsipenko A.V. Study of axial fan in the cae system "FlowWision". Vestnik MAI [Aerospace MAI Journal], 2011, vol. 18, no. 6, pp. 35–38. (In Russ.).
[16] Gordeev V.A., Timushev S.F., Firsov V.P. et al. Numerical study of fluid behaviour in launch vehicle tanks. Vestnik MAI [Aerospace MAI Journal], 2011, vol. 18, no. 1, pp. 47–53. (In Russ.).
[17] Achour L., Speclin M., Belaidi I. et al. Numerical study of the performance loss of a centrifugal pump carrying emulsion. E3S Web Conf., 2021, vol. 321, art. 01010, doi: https://doi.org/10.1051/e3sconf/202132101010
[18] Achour L., Speclin M., Belaidi I. et al. Numerical assessment of the hydrodynamic behavior of a volute centrifugal pump handling emulsion. Entropy, 2022, vol. 24, no. 2, art. 221, doi: https://doi.org/10.3390/e24020221
[19] Valdés J.P., Asuaje M., Ratkovich N. Study of an ESP’s performance handling liquid-liquid flow and unstable O-W emulsions part II. Coupled CFD-PBM modelling. J. Pet. Sci. Eng., 2021, vol. 198, art. 108227, doi: https://doi.org/10.1016/j.petrol.2020.108227
[20] Banjar H., Zhang H.Q. Experiments and emulsion rheology modeling in an electric submersible pump. Proc. Int. Petroleum Technology Conf., 2019, art. IPTC-19463-MS, doi: https://doi.org/10.2523/iptc-19463-ms
[21] Zhu J., Zhu H., Cao G. et al. A new mechanistic model for oil-water emulsion rheology and boosting pressure prediction in electrical submersible pumps ESP. Proc. SPE Annual Technical Conf. and Exhibition, 2019, art. SPE-196155-MS, doi: https://doi.org/10.2118/196155-ms
[22] Zhu J., Zhu H., Cao G. et al. A new mechanistic model to predict boosting pressure of electrical submersible pumps ESPs under high-viscosity fluid flow with validations by experimental data. Proc. SPE Gulf Coast Section Electric Submersible Pumps Symp., 2019, art. SPE-194384-MS, doi: https://doi.org/10.2118/194384-ms
[23] Zhang M., Dabirian R., Mohan R.S. et al. Effect of shear and water cut on phase inversion and droplet size distribution in oil-water flow. J. Energy Resour. Technol., 2019, vol. 141, no. 3, art. 032905, doi: https://doi.org/10.1115/1.4041661
[24] Lomakin V.O., Chaburko P.S., Kuleshova M.S. Multi-criteria optimization of the flow of a centrifugal pump on energy and vibroacoustic characteristics. Procedia Eng., 2017, vol. 176, pp. 476–482, doi: https://doi.org/10.1016/j.proeng.2017.02.347
[25] Lomakin V.O., Kuleshova M.S., Bozh’eva S.M. Numerical modeling of liquid flow in a pump station. Power Technol. Eng., 2016, vol. 49, no. 5, pp. 324–327, doi: https://doi.org/10.1007/s10749-016-0623-9
[26] Lomakin V.O., Kuleshova M.S., Kraeva E.A. Fluid flow in the throttle channel in the presence of cavitation. Procedia Eng., 2015, vol. 106, pp. 27–35, doi: https://doi.org/10.1016/j.proeng.2015.06.005
[27] Shargatov V.A., Gorkunov S.V., Il’ichev A.T. Dynamics of front-like water evaporation phase transition interfaces. Nonlinear Sci. Numer. Simul., 2019, vol. 67, pp. 223–236, doi: https://doi.org/10.1016/j.cnsns.2018.07.006
[28] Arefyev K.Y., Prokhorov A.N., Saveliev A.S. Study of the breakup of liquid droplets in the vortex wake behind pylon at high airspeeds. Thermophys. Aeromech., 2018, vol. 25, no. 1, pp. 55–66, doi: https://doi.org/10.1134/S0869864318010055
[29] Gouskov A.M., Lomakin V.O., Banin E.P. et al. Minimization of hemolysis and improvement of the hydrodynamic efficiency of a circulatory support pump by optimizing the pump flowpath. Biomed. Eng., 2017, vol. 51, no. 4, pp. 229–233, doi: https://doi.org/10.1007/s10527-017-9720-9
[30] Arefyev K.Y., Voronetsky A.V., Suchkov S.A. et al. Computational and experimental study of the two-phase mixing in gas-dynamic ignition system. Thermophys. Aeromech., 2017, vol. 24, no. 2, pp. 225–237, doi: https://doi.org/10.1134/S086986431702007X
[31] Lomakin V.O., Kuleshovav M.S., Bozh’eva S.M. Numerical modeling of liquid flow in a pump station. Power Technol. Eng., 2016, vol. 49, no. 5, pp. 324–327, doi: https://doi.org/10.1007/s10749-016-0623-9
[32] Trulev A., Kayuda M., Timushev S. et al. Conceptual features for improving the flow part of the multiphase stages of ESP submersible plants for small and medium feeds for extracting stratal liquid with a high free gas content. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012042, doi: https://doi.org/10.1088/1757-899X/779/1/012042
[33] Cheremushkin V., Lomakin V., Kalin N. et al. Development and research of a borehole centrifugal pump stage. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012055, doi: https://doi.org/10.1088/1757-899X/779/1/012055
[34] Anpina N.A., Kaplan A.L., Peshcherenko S.N. Submersible separators for solids management. Burenie i neft, 2011, no. 12, pp. 40–43. (In Russ.).
[35] Sabirov A.A. Bench tests of downhole mechanical impurities separators. Inzhenernaya praktika, 2011, no. 5, pp. 150–155. (In Russ.).
[36] Bulat A.V. Povyshenie effektivnosti raboty skvazhinnogo nasosnogo oborudovaniya za schet primeneniya separatorov mekhanicheskikh primesey. Diss. kand. tekh. nauk [Increasing efficiency of downhole pumping equipment through the use of mechanical impurities separators. Kand. tech. sci. diss.]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2013. (In Russ.).
[37] Anpina N.A., Peshcherenko S.N. Mathematical modeling of solid particles motion in submersible separators. Nauchno-tekhnicheskie vedomosti SPbGPU. Fiziko-matematicheskie nauki [St. Petersburg Polytechnical University Journal: Physics and Mathematics], 2012, no. 2, pp. 62–68. (In Russ.).
[38] Trulev A.V., Sherstyuk A.N. To calculate the flow of two-component mixtures in pumps and gas separators. Khimicheskoe i neftyanoe mashinostroenie, 2000, no. 8, pp. 36–38. (In Russ.).
[39] Novokreschennykh D.V. Evaluation of the effectiveness of the use of separators of mechanical impurities. Materials of the conference "Operation of the complicated fund of wells", Surgut 2022.