Computational, theoretical and experimental study of cavitation characteristics of the gate wellhead devices with the internal bypass
Authors: Muftakhov V.Z. | Published: 05.07.2023 |
Published in issue: #7(760)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: pipeline fittings, bypass, hydraulic characteristics, cavitation |
Hydraulic systems include control devices that create local resistance. Decreasing and increasing the working medium pressure and flow rate in the control devices cause cavitation, vibration, noise, material destruction, increase in the energy losses and decrease in the efficiency, which adverse effects could be reduced by using a bypass. One of the important tasks in designing the control devices is establishment of the cavitation characteristics. Introduction of an internal bypass in such devices makes it possible to reduce forces on the control elements displacement and the specific pressures in opening and closing, as well as to locate the cavitation bubbles collapse point in the flow behind the control gates. The paper presents results of a computational theoretical study using a modern complex of engineering analysis and experimental determination of the cavitation characteristics of the gate wellhead device with an internal bypass.
References
[1] Arzumanov E.S. Kavitatsiya v mestnykh gidravlicheskikh soprotivleniyakh [Cavitation in local hydraulic resistances]. Moscow, Energiya Publ., 1978. 303 p. (In Russ.).
[2] Rozhdestvenskiy V.V. Kavitatsiya [Cavitation]. Leningrad, Sudostroenie Publ., 1977. 247 p. (In Russ.).
[3] Afanasyeva O.V., Bakulina A.A., Korkunov S.B. Prospects for the development of the Russian valve industry in the current economic environment. Gazovaya promyshlennost [Gas Industry], 2020, no. 6, pp. 70–73. (In Russ.).
[4] Chinyaev I.R., Shanaurin A.L., Fominykh A.V. Upravlenie potokami zhidkostey i gazov. Ch. 1. Shibernye zaporno-reguliruyushchie ustroystva [Fluid and gas flow control. P. 1. Shifter shut-off and control devices]. Kurgan, Izd-vo KGU Publ., 2022. 248 p. (In Russ.).
[5] Zaslavskiy G.A., Ryazanov V.A., Sukhov S.A. et al. Zaporno-reguliruyushchee ustroystvo [Shutoff-control device]. Patent RU 2586958. Appl. 21.11.2014, publ. 10.06.2016. (In Russ.).
[6] Vlasyuk P.E., Chernyshev A.V., Chinyaev I.R. et al. Calculation of gate valve capacity for oil and gas production lines. Truboprovodnaya armatura i oborudovanie, 2022, no. 2, pp. 37–39. (In Russ.).
[7] Malov D.A., Chernyshev A.V. Increase of flow capacity and control range of flow-through valve. Truboprovodnaya armatura i oborudovanie, 2023, no. 1, pp. 25–27. (In Russ.).
[8] Ignatyeva T.Yu., Gorobchenko S.L., Kovalev D.A. Model of control valve behaviour. Truboprovodnaya armatura i oborudovanie, 2023, no. 1, pp. 12–15. (In Russ.).
[9] Fominykh A., Chinyaev I., Telminov A. et al. Development of a method for determining the specific pressures on the sealing fields of slide valves. AIP Conf. Proc., 2022, vol. 2503, no. 1, art. 050062, doi: https://doi.org/10.1063/5.0099962
[10] Chinyaev I.R., Fominykh A.V., Poshivalov E.A. et al. The throughput ability of shutoff and control valves. Ekspozitsiya neft gaz [Exposition Oil & Gas], 2015, no. 2, pp. 38–40. (In Russ.).
[11] Idelchik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Handbook of hydraulic resistances]. Moscow, Mashinostroenie Publ., 1992. 671 p. (In Russ.).
[12] Wu H., Li J.Y., Gao Z.X. Flow Characteristics and stress analysis of a parallel gate valve. Processes, 2019, vol. 7, no. 11, art. 803, doi: https://doi.org/10.3390/pr7110803
[13] Liu P., Liu Y., Huang Z. et al. Design optimization for subsea gate valve based on combined analyses of fluid characteristics and sensitivity. J. Pet. Sci. Eng., 2019, vol. 182, art. 106277, doi: https://doi.org/10.1016/j.petrol.2019.106277
[14] GOST 34437–2018. Armatura truboprovodnaya. Metodika eksperimentalnogo opredeleniya gidravlicheskikh i kavitatsionnykh kharakteristik [State standard GOST 34437–2018. Pipeline valves. Technique of the experimental determination of hydraulic and cavitation characteristics]. Moscow, Standartinform Publ., 2018. 33 p. (In Russ.).
[15] Fominykh A.V., Poshivalov E.A., Ilinykh E.A. The determination of hydraulic and cavitating characteristics of the cell valve. Vestnik Kurganskoy GSKhA, 2016, no. 1, pp. 71–75. (In Russ.).
[16] Kotelnikov L.V., Poshivalov E.A., Fominykh A.V. et al. Calculation of gate valve capacity for oil and gas production lines. Truboprovodnaya armatura i oborudovanie, 2017, no. 2, pp. 54–55. (In Russ.).
[17] Chinyaev I.R., Fominykh A.V., Poshivalov E.A. et al. Experience of use of gost r 55508–2013 when determining hydraulic and cavitational characteristics of cellular stop-control valve. Territoriya neftegaz, 2016, no. 7–8, pp. 96–101. (In Russ.).