On structure of the hydraulic energy losses during the multistage vane pump operation
Authors: Stasyuk I.O., Savin V.V., Pogosyan E.K., Savinа L.A., Rimer A. | Published: 10.09.2023 |
Published in issue: #9(762)/2023 | |
Category: Mechanical Engineering and Machine Science | Chapter: Hydraulic Machines, Vacuum, Compressor Technology, Hydraulic and Pneumatic Systems | |
Keywords: multistage blade (vane) pump, centrifugal-type stage, diagonal-type stage, hydraulic losses, local hydraulic resistance, hydraulic friction resistance |
The paper proposes methodology for assessing hydraulic resistance of the vane pump stages. The methodology makes it possible to reveal the hydraulic losses structure during liquid pumping and assess contribution of each type of these losses to the overall balance of the pumping stage energy consumption. Dependence of hydraulic losses on the width of the inter-vane flow channels is shown. Theoretical method was developed to predict the effect achieved by altering the vane design and production technology. Prospects of research, design, development and industrial production of the new type of multistage vane pumps with the oval-type stages are substantiated.
References
[1] Ageev Sh.R., Grigoryan E.E., Makienko G.P. Rossiyskie ustanovki lopastnykh nasosov dlya dobychi nefti i ikh primenenie [Russian installations of vane pumps for oil production and their application]. Perm, Press-Master Publ., 2007. 645 p. (In Russ.).
[2] Ivanovskiy V.N., Sabirov A.A., Degovtsev A.V. et al. Proektirovanie i issledovanie stupeney dinamicheskikh nasosov [Designing and research of stages of dynamic pumps]. Moscow, RGU nefti i gaza im. I.M. Gubkina Publ., 2014. 102 p. (In Russ.).
[3] Nicheporenko O.S., Nayda Yu.I., Medvedovskiy A.B. Raspylennye metallicheskie poroshki [Atomized metal powder]. Kiev, Naukova dumka Publ., 1980. 240 p. (In Russ.).
[4] Kolmakov A.G., Ivannikov A.Yu., Kaplan M.A. et al. Corrosion-resistant steels in additive manufacturing. Izvestiya vysshikh uchebnykh zavedeniy. Chernaya Metallurgiya [Izvestiya. Ferrous Metallurgy], 2021, vol. 64, no. 9, pp. 619–650, doi: https://doi.org/10.17073/0368-0797-2021-9-619-650 (in Russ.).
[5] Savin V.V., Marukhin A.O., Osadchy A.V. et al. Crystal chemistry of anisotropy magnetic properties gas atomization powders of an alloy of the Fe-Nd-B system. IOP Conf. Ser.: Mater. Sci. Eng., 2021, vol. 1181, art. 012014, doi: https://doi.org/10.1088/1757-899X/1181/1/012014
[6] Valyukhov S.G., Galdin D.N., Korotov V.V. et al. Using approximation models to optimize the impeller profile of a centrifugal pump. Nasosy. Turbiny. Sistemy [Pumps. Turbines. Systems], 2020, no. 2, pp. 58–65. (In Russ.).
[7] Zhu J., Zhu H., Cao G. et al. A new mechanistic model to predict boosting pressure of electrical submersible pumps ESPs under high-viscosity fluid flow with validations by experimental data. Proc. SPE Gulf Coast Section Electric Submersible Pumps Symp., 2019, paper SPE-194384-MS, doi: https://doi.org/10.2118/194384-ms
[8] Petrov A.I., Lysenko A.V., Konkeev E.M. et al. Investigation of the relationship between the centrifugal pump energy performance and the guide vane channel geometric parameters. Gidravlika, 2022, no. 13. URL: http://hydrojournal.ru/images/journal/number13/PetrovLysenkoKonkeev.pdf (in Russ.).
[9] Petrov A.I., Lysenko A.V., Valiev T.Z. et al. Optimal design of inlet device of multistage centrifugal pump. Gidravlika, 2021, no. 13. URL: http://hydrojournal.ru/images/journal/number13/PetrovLysenkoValievIsaev.pdf (in Russ.).
[10] Trulev A.V., Timushev S.F., Lomakin V.O. et al. Problems and ways to solve the development of heavy oil fields with complex geological conditions. Neft. Gaz. Novatsii, 2020, no. 2, pp. 55–60. (In Russ.).
[11] Cheremushkin V., Lomakin V., Kalin N. et al. Development and research of a borehole centrifugal pump stage. IOP Conf. Ser.: Mater. Sci. Eng., 2020, vol. 779, art. 012055, doi: https://doi.org/10.1088/1757-899X/779/1/012055
[12] Stasyuk I.O., Savin V.V. Method for evaluating the hydraulic resistance of a vane pump stage and its use to improve the efficiency of pumping units. Territoriya Neftegaz [Oil and Gas Territory], 2022, no. 7–8, pp. 52–60. (In Russ.).
[13] Stasyuk I.O., Savin V.V. On the hydraulic resistances of stages of vane pumps. Territoriya Neftegaz [Oil and Gas Territory], 2022, no. 11–12, pp. 78–86. (In Russ.).
[14] Lomakin A.A. Tsentrobezhnye i osevye nasosy [Centrifugal and axial pumps]. Moscow, Mashinostroenie Publ., 1966. 364 p. (In Russ.).
[15] Idelchik I.E. Spravochnik po gidravlicheskim soprotivleniyam [Reference book on hydraulic resistances]. Moscow, Mashinostroenie Publ., 1992. 672 p. (In Russ.).
[16] Stasyuk I.O., Stasyuk A.O., Nakonechnyy A.I. Stupen mnogostupenchatogo lopastnogo nasosa [Stage of multistage vane pump]. Patent RU 2735978. Appl. 24.06.2020, publ. 11.11.2020. (In Russ.).
[17] Stasyuk I.O., Stasyuk A.O., Nakonechnyy A.I. Stupen lopastnogo mnogostupenchatogo nasosa diagonalno-ovalnogo tipa [Vane stage multistage pump of diagonal-oval type]. Patent RU 206628. Appl. 06.03.2021, publ. 17.09.2021. (In Russ.).
[18] Gusin N.V., Rabinovich A.I., Perelman O.M. et al. Stupen pogruzhnogo mnogostupenchatogo nasosa [Stage of submersible multistage pump]. Patent RU 2253756. Appl. 25.08.2003, publ. 10.06.2005. (In Russ.).
[19] Stasyuk I.O., Stasyuk A.O., Nakonechnyy A.I. Rabochee koleso stupeni lopastnogo nasosa [Impeller of blade pump stage]. Patent RU 2735971. Appl. 25.02.2020, publ. 11.11.2020. (In Russ.).